Solveeit Logo

Question

Question: If a tangent to the ellipse \(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1\), whose centre is C, me...

If a tangent to the ellipse x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1, whose centre is C, meets the major and minor axes at P and Q respectively, then a2CP2+b2CQ2\frac{a^{2}}{CP^{2}} + \frac{b^{2}}{CQ^{2}} is equal to

A

a2 + b2

B

a2 - b2

C

2\sqrt{2}

D

1

Answer

1

Explanation

Solution

Equation of tangent is y = mx + a2m2+b2\sqrt{a^{2}m^{2} + b^{2}}.

At x = 0; CQ = a2m2+b2\sqrt{a^{2}m^{2} + b^{2}}

At y = 0; CP = a2m2+b2m- \frac{\sqrt{a^{2}m^{2} + b^{2}}}{m}

a2CP2+b2CQ2=a2m2a2m2+b2+b2a2m2+b2=1\frac{a^{2}}{CP^{2}} + \frac{b^{2}}{CQ^{2}} = \frac{a^{2}m^{2}}{a^{2}m^{2} + b^{2}} + \frac{b^{2}}{a^{2}m^{2} + b^{2}} = 1.