Solveeit Logo

Question

Question: If a tangent having slope of – \(\frac{4}{3}\) to the ellipse \(\frac{x^{2}}{18} + \frac{y^{2}}{32}\...

If a tangent having slope of – 43\frac{4}{3} to the ellipse x218+y232\frac{x^{2}}{18} + \frac{y^{2}}{32} = 1 intersects the major and minor axes in points A and B respectively, then the area of D OAB is equal to –

A

12 sq. units

B

48 sq. units

C

64 sq. units

D

24 sq. units

Answer

24 sq. units

Explanation

Solution

Let P(x1, y1) be a point on the ellipse

x218\frac{x^{2}}{18} + y232\frac{y^{2}}{32} = 1.

\ x1218\frac{x_{1}^{2}}{18} + y1232\frac{y_{1}^{2}}{32} = 1 (i)

The equation of the tangent at (x1, y1) is

xx118\frac{xx_{1}}{18}+ yy132\frac{yy_{1}}{32} = 1.

This meets the axes at A (18x1,0)\left( \frac{18}{x_{1}},0 \right) and (0,32y1)\left( 0,\frac{32}{y_{1}} \right).

If is given that the slope of the tangent at (x1, y1) is – 43\frac{4}{3}. Therefore

x118\frac{x_{1}}{18}· 32y1\frac{32}{y_{1}} = – 43\frac{4}{3} Ž x1y1\frac{x_{1}}{y_{1}} = 34\frac{3}{4} Ž x13\frac{x_{1}}{3} = y14\frac{y_{1}}{4} = k (say)

\ x1 = 3k, y1 = 4k.

Putting x1, y1 in (i), we get k2 = 1.

Now, area of DOAB = 12\frac{1}{2} OA · OB = 12\frac{1}{2} 18x1\frac{18}{x_{1}}· 32y1\frac{32}{y_{1}} = 12\frac{1}{2} (18)(32)(x1y1)\frac{(18)(32)}{(x_{1}y_{1})}

= 12\frac{1}{2} (18)(32)(3k)(4k)\frac{(18)(32)}{(3k)(4k)} = 24k2\frac{24}{k^{2}} = 24 (Q k2 = 1).