Solveeit Logo

Question

Mathematics Question on Ellipse

If a tangent having slope of 43-\frac{4}{3} to the ellipse x218+y234=1\frac{x^{2}}{18}+\frac{y^{2}}{34}=1 intersects the major and minor axes in points AA and BB respectively, then the area of ΔOAB\Delta OAB is equal to (O is the centre of the ellipse)

A

12 sq units

B

48 sq units

C

64 sq units

D

24 sq units

Answer

24 sq units

Explanation

Solution

Let P(x1,y1)P\left(x_{1}, y_{1}\right) be a point on the ellipse.
x218+y232=1\frac{x^{2}}{18}+\frac{y^{2}}{32}=1
x1218+y1232=1\Rightarrow \frac{x_{1}^{2}}{18}+\frac{y_{1}^{2}}{32}=1
The equation of the tangent at (x1,y1)\left(x_{1}, y_{1}\right) is
xx118+yy132=1\frac{x x_{1}}{18}+\frac{y y_{1}}{32}=1.
This meets the axes at A(18x1,0)A\left(\frac{18}{x_{1}}, 0\right) and
B(0,32y1)B\left(0, \frac{32}{y_{1}}\right) It is given that slope of the tangent at
(x1,y1)\left(x_{1}, y_{1}\right) is 34-\frac{3}{4}
Hence, x11832y1=43-\frac{x_{1}}{18} \cdot \frac{32}{y_{1}}=-\frac{4}{3}
x1y1=34\Rightarrow \frac{x_{1}}{y_{1}}=\frac{3}{4}
x13=y14=K\Rightarrow \frac{x_{1}}{3}=\frac{y_{1}}{4}=K (say)
x1=3K\therefore x_{1}=3 K
y1=4Ky_{1}=4 K
Putting x1,y1x_{1}, y_{1} in (i), we get
K2=1K^{2}=1
Now, are of ΔOAB=12OAOB\Delta O A B=\frac{1}{2} O A \cdot O B
=1218x132y1=\frac{1}{2} \cdot \frac{18}{x_{1}} \cdot \frac{32}{y_{1}}
=12(18)(32)(x1y1)=\frac{1}{2} \frac{(18)(32)}{\left(x_{1} y_{1}\right)}
=12(18)(32)(3K)(4K)=\frac{1}{2} \frac{(18)(32)}{(3 K)(4 K)}
=24K2=\frac{24}{K^{2}}
=24=24 sq units (K2=1)\left(\because K^{2}=1\right)