Solveeit Logo

Question

Question: If a tangent having slope of \(-\dfrac{4}{3}\) to the ellipse \(\dfrac{{{x}^{2}}}{18}+\dfrac{{{y}^{2...

If a tangent having slope of 43-\dfrac{4}{3} to the ellipse x218+y232=1\dfrac{{{x}^{2}}}{18}+\dfrac{{{y}^{2}}}{32}=1 intersects the major and minor axes in points AA and BB respectively, then the area of ΔOAB\Delta OAB is equal to ( OO is the centre of the ellipse)
A. 24sq.units24sq.units
B. 48sq.units48sq.units
C. 64sq.units64sq.units
D. 24sq.units24sq.units

Explanation

Solution

Hint: Assume point LL and use the general equation of tangent. You will get the values of a,ba,b and mm .
Put x=0x=0 and y=0y=0 , you will get the points as base and height. Try it.

Complete step by step answer:
Let (x1,y1)({{x}_{1}},{{y}_{1}}) consider L(x1,y1)L({{x}_{1}},{{y}_{1}}) be a point on ellipse.

So the equation of ellipse is given as,
x218+y232=1\dfrac{{{x}^{2}}}{18}+\dfrac{{{y}^{2}}}{32}=1………… (1)
So as the point LL is on ellipse so substituting (x1,y1)({{x}_{1}},{{y}_{1}}) in (1), we get,
x1218+y1232=1\dfrac{{{x}_{1}}^{2}}{18}+\dfrac{{{y}_{1}}^{2}}{32}=1……………. (2)
So now we need the equation of tangent,
The equation of tangent to ellipse x2a2+y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 at point (x1,y1)({{x}_{1}},{{y}_{1}}) is xx1a+yy1b=1\dfrac{x{{x}_{1}}}{a}+\dfrac{y{{y}_{1}}}{b}=1 ,
So The equation of tangent at (x1,y1)({{x}_{1}},{{y}_{1}}) is
xx118+yy132=1\dfrac{x{{x}_{1}}}{18}+\dfrac{y{{y}_{1}}}{32}=1,
So for above equation of tangent at y=0y=0 we get xx- Coordinate as 18x1\dfrac{18}{{{x}_{1}}} , i.e. (18x1,0)\left( \dfrac{18}{{{x}_{1}}},0 \right) .
And at x=0x=0 we get yy- coordinate as 32y1\dfrac{32}{{{y}_{1}}} , i.e. (0,32y1)\left( 0,\dfrac{32}{{{y}_{1}}} \right) .
So the equation of tangent meets the axes at A(18x1,0)A\left( \dfrac{18}{{{x}_{1}}},0 \right) and B(0,32y1)B\left( 0,\dfrac{32}{{{y}_{1}}} \right) .
Now we have given the slope of tangent at (x1,y1)({{x}_{1}},{{y}_{1}}) is 43-\dfrac{4}{3} .
So x118×32y1=43-\dfrac{{{x}_{1}}}{18}\times \dfrac{32}{{{y}_{1}}}=-\dfrac{4}{3}
So now simplifying we get,
x1y1=4×1832×3 x1y1=68 \begin{aligned} & \dfrac{{{x}_{1}}}{{{y}_{1}}}=\dfrac{4\times 18}{32\times 3} \\\ & \dfrac{{{x}_{1}}}{{{y}_{1}}}=\dfrac{6}{8} \\\ \end{aligned}
x1y1=34\dfrac{{{x}_{1}}}{{{y}_{1}}}=\dfrac{3}{4}
So let us write it as,
x13=y14\dfrac{{{x}_{1}}}{3}=\dfrac{{{y}_{1}}}{4}
Let us say that x13=y14=k\dfrac{{{x}_{1}}}{3}=\dfrac{{{y}_{1}}}{4}=k .
Where k is any constant term,
So the points x1=3k{{x}_{1}}=3k and y1=4k{{y}_{1}}=4k ,
Now substituting x1{{x}_{1}} and y1{{y}_{1}} in equation (2) we get,
(3k)218+(4k)232=1\dfrac{{{(3k)}^{2}}}{18}+\dfrac{{{(4k)}^{2}}}{32}=1
So simplifying we get,
9k218+16k232=1\dfrac{9{{k}^{2}}}{18}+\dfrac{16{{k}^{2}}}{32}=1 ………………. (Here (3)2=9{{\left( 3 \right)}^{2}}=9 and (4)2=16{{\left( 4 \right)}^{2}}=16 )
Now taking k2{{k}^{2}} as common we get,
k2(918+1632)=1{{k}^{2}}\left( \dfrac{9}{18}+\dfrac{16}{32} \right)=1
So now simplifying the inner bracket we get,
k2(12+12)=1 k2(1)=1 \begin{aligned} & {{k}^{2}}\left( \dfrac{1}{2}+\dfrac{1}{2} \right)=1 \\\ & {{k}^{2}}\left( 1 \right)=1 \\\ \end{aligned}
So We get k2=1{{k}^{2}}=1 ………. (3)
So we want to find area of ΔOAB\Delta OAB ,
So we know in general the area of the triangle is equal to 12×base×height\dfrac{1}{2}\times base\times height.
Area of ΔOAB\Delta OAB =12×base×height=\dfrac{1}{2}\times base\times height
So in figure we can see that in ΔOAB\Delta OAB ,
OA=base=18x1 OB=height=32y1 \begin{aligned} & OA=base=\dfrac{18}{{{x}_{1}}} \\\ & OB=height=\dfrac{32}{{{y}_{1}}} \\\ \end{aligned}
So Area of ΔOAB\Delta OAB =12×OA×OB=\dfrac{1}{2}\times OA\times OB
Area of ΔOAB\Delta OAB =12×18x1×32y1=\dfrac{1}{2}\times \dfrac{18}{{{x}_{1}}}\times \dfrac{32}{{{y}_{1}}}
We have calculated the value of x1{{x}_{1}} and y1{{y}_{1}} ,We know that value of x1=3k{{x}_{1}}=3k and y1=4k{{y}_{1}}=4k ,
So substituting the values of x1{{x}_{1}} and y1{{y}_{1}} , we get,
Area of ΔOAB\Delta OAB =12×183k×324k=\dfrac{1}{2}\times \dfrac{18}{3k}\times \dfrac{32}{4k}
Area of ΔOAB\Delta OAB =9×323×4×k2=\dfrac{9\times 32}{3\times 4\times {{k}^{2}}}
So simplifying it in simple manner we get,
Area of ΔOAB\Delta OAB =3×324×k2=\dfrac{3\times 32}{4\times {{k}^{2}}}
Area of ΔOAB\Delta OAB =3×8k2=\dfrac{3\times 8}{{{k}^{2}}}
Area of ΔOAB\Delta OAB =24k2=\dfrac{24}{{{k}^{2}}}
So we have found out the value of k2=1{{k}^{2}}=1 , from (3)
So substituting the value of k2{{k}^{2}} in above we get,
Area of ΔOAB\Delta OAB =2412=\dfrac{24}{{{1}^{2}}}
Area of ΔOAB\Delta OAB =24sq.units=24sq.units
So we got the Area of ΔOAB\Delta OAB as 24sq.units24sq.units.

So the area of ΔOAB\Delta OAB is 24sq.units24sq.units.

Note: So in the above problem read the question carefully. So be thorough with the concept as I have considered point LL so you should understand why I have considered it. So we can solve this problem by other method such as we know general equation of tangent y=mx+a2m2+b2y=mx+\sqrt{{{a}^{2}}{{m}^{2}}+{{b}^{2}}}
So a=18,b=32a=18,b=32 and m=43m=-\dfrac{4}{3}.
So substituting all values in above equation we get,
So we get final equation as,
y=43x+8y=-\dfrac{4}{3}x+8
So putting x=0x=0 we get ycoordinatey-coordinate as 88 ,so A(6,0)A(6,0) .
And that of y=0y=0 we get xcoordinatex-coordinateas 66, so B(0,8)B(0,8).
So here base=6base=6and height=8height=8
So Area of ΔOAB\Delta OAB =12×base×height=\dfrac{1}{2}\times base\times height
Area of ΔOAB\Delta OAB =12×6×8=24sq.units=\dfrac{1}{2}\times 6\times 8=24sq.units
So in this way you can solve it.