Solveeit Logo

Question

Question: If a tangent having slope of -4/3 to the ellipse \(\frac{x^{2}}{18} + \frac{y^{2}}{32} = 1\) interse...

If a tangent having slope of -4/3 to the ellipse x218+y232=1\frac{x^{2}}{18} + \frac{y^{2}}{32} = 1 intersects the major and minor axes in points A and B respectively, then the area of the ∆OAB is equal to

A

12 sq. units

B

48 sq. units

C

64 sq. units

D

24 sq. units

Answer

24 sq. units

Explanation

Solution

Let P (x1, y1) be a point on the ellipse x218+y232=1\frac{x^{2}}{18} + \frac{y^{2}}{32} = 1.

Then x1218+y1232=1\frac{x_{1}^{2}}{18} + \frac{y_{1}^{2}}{32} = 1

The equation of the tangent at (x1, y1) is xx118+yy132=1\frac{xx_{1}}{18} + \frac{yy_{1}}{32} = 1

This meets the axes at A (18x1,0)\left( \frac{18}{x_{1}},0 \right) and B (0,32y1)\left( 0,\frac{32}{y_{1}} \right)

It is given that the slope of the tangent at (x1, y1) is -3/4, therefore,

x118.32y1=43x1y1=34\frac{- x_{1}}{18}.\frac{32}{y_{1}} = - \frac{4}{3} \Rightarrow \frac{x_{1}}{y_{1}} = \frac{3}{4}x13=y14=k\frac{x_{1}}{3} = \frac{y_{1}}{4} = k (say)

⇒ x1 = 3k, y1 = 4k

Putting x1, y1 in (1), we get, k2 = 1

Now, area of ∆OAB = 12\frac{1}{2}. OA.OB = 12\frac{1}{2}.18x1.32y1\frac{18}{x_{1}}.\frac{32}{y_{1}}

= 12(18)(32)x1y1=12(18)(32)(3k)(4k)=24k2=24\frac{1}{2}\frac{(18)(32)}{x_{1}y_{1}} = \frac{1}{2}\frac{(18)(32)}{(3k)(4k)} = \frac{24}{k^{2}} = 24