Solveeit Logo

Question

Question: If \(A = {\tan ^{ - 1}}\left( {\dfrac{1}{7}} \right)\) and \(B = {\tan ^{ - 1}}\left( {\dfrac{1}{3}}...

If A=tan1(17)A = {\tan ^{ - 1}}\left( {\dfrac{1}{7}} \right) and B=tan1(13)B = {\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right) , then
(A) cos2A=2425\cos 2A = \dfrac{{24}}{{25}}
(B) cos2B=45\cos 2B = \dfrac{4}{5}
(C) cos2A=sin4B\cos 2A = \sin 4B
(D) tan2B=34\tan 2B = \dfrac{3}{4}

Explanation

Solution

In this question first we will convert AA into tanA\tan A and BB into tanB\tan B .Now, we will use the identity of cos2θ\cos 2\theta and sin2θ\sin 2\theta in terms of tanθ\tan \theta and then by substituting the value of tanA\tan A in the formula we will check each options one by one. Hence, by doing so we will find the correct option.

**Formula used:
** The formula we are going to use in this question is cos2θ=1tan2θ1+tan2θ\cos 2\theta = \dfrac{{1 - {{\tan }^2} \theta }}{{1 + {{\tan }^2}\theta }} and sin2θ=2tanθ1+tan2θ\sin 2 \theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2} \theta }} .

Complete step by step solution:
The given values are A=tan1(17)A = {\tan ^{ - 1}}\left( {\dfrac{1}{7}} \right) and B=tan1(13)B = {\tan ^{ - 1}}\left( {\dfrac{1}{3}} \right) . Now, we can write A=tan1(17)A = {\tan ^{ - 1}}\left( {\dfrac{1}{7}} \right) as tanA=17\tan A = \dfrac{1}{7} similarly we can write tanB=13\tan B = \dfrac{1}{3} .
Now use the formula cos2A=1tan2A1+tan2A\cos 2A = \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}} and substitute the value of tanA=17\tan A = \dfrac{1}{7} in the formula. Therefore, we can write.
cos2A=1tan2A1+tan2A cos2A=1(17)21+(17)2=11491+149  \cos 2A = \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}} \\\ \Rightarrow \cos 2A = \dfrac{{1 - {{\left( {\dfrac{1}{7}} \right)}^2}}}{{1 + {{\left( {\dfrac{1}{7}} \right)}^2}}} = \dfrac{{1 - \dfrac{1}{{49}}}}{{1 + \dfrac{1}{{49}}}} \\\
Simplify, the above equation
484950494849×495048502425\Rightarrow \dfrac{\dfrac{48}{49}}{\dfrac{50}{49}} \Rightarrow \dfrac{48}{49} \times \dfrac{49}{50} \Rightarrow \dfrac{48}{50} \Rightarrow \dfrac{24}{25}
Now, substitute the value of tanB=13\tan B = \dfrac{1}{3} in the formula cos2B=1tan2B1+tan2B\cos 2B = \dfrac{{1 - {{\tan }^2}B}}{{1 + {{\tan }^2}B}} . Therefore, we can write
cos2B=1tan2B1+tan2B cos2B=1(13)21+(13)2=1191+19  \cos 2B = \dfrac{{1 - {{\tan }^2}B}}{{1 + {{\tan }^2}B}} \\\ \Rightarrow \cos 2B = \dfrac{{1 - {{\left( {\dfrac{1}{3}} \right)}^2}}}{{1 + {{\left( {\dfrac{1}{3}} \right)}^2}}} = \dfrac{{1 - \dfrac{1}{9}}}{{1 + \dfrac{1}{9}}} \\\
Simplify the above equation
8/910/9=810=45\Rightarrow \dfrac{{{{8} {\left/ { {}}\right.} {9}}}}{{{{{10}} {\left/ { { 9}}\right.} {}}}} = \dfrac{8}{{10}} = \dfrac{4}{5}
Now, similarly we will find the value of sin2B\sin 2B with the help of this formula sin2B=2tanB1+tan2B\sin 2B = \dfrac{{2\tan B}}{{1 + {{\tan }^2}B}} . Substitute the value of tanB=13\tan B = \dfrac{1}{3} in sin2B=2tanB1+tan2B\sin 2B = \dfrac{{2\tan B}}{{1 + {{\tan }^2}B}} . Therefore, we can write
sin2B=2tanB1+tan2B sin2B=2(13)1+(13)2=2/31+19  \Rightarrow \sin 2B = \dfrac{{2\tan B}}{{1 + {{\tan }^2}B}} \\\ \Rightarrow \sin 2B = \dfrac{{2\left( {\dfrac{1}{3}} \right)}}{{1 + {{\left( {\dfrac{1}{3}} \right)}^2}}} = \dfrac{{{{2} {\left/ { {}}\right.} {3}}}}{{1 + \dfrac{1}{9}}} \\\
Now, simplify the above equation
sin2B=2/310/9=35\Rightarrow \sin 2B = \dfrac{{{{2} {\left/ { {}}\right.} {3}}}}{{{{{10}} {\left/ { {}}\right.} {9}}}} = \dfrac{3}{5}
Now, from the above calculation we say that the option (A) and the option (B) are correct. Now, we will check the option (C)
We know that sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta . Therefore, we can write sin4B=2sin2Bcos2B\sin 4B = 2\sin 2B\cos 2B . Now, substitute the value of sin2B\sin 2B and cos2B\cos 2B in sin4B=2sin2Bcos2B\sin 4B = 2\sin 2B\cos 2B . Therefore, we can write:
sin4B=2sin2Bcos2B sin4B=2(35)(45)=2425  \Rightarrow \sin 4B = 2\sin 2B\cos 2B \\\ \Rightarrow \sin 4B = 2\left( {\dfrac{3}{5}} \right)\left( {\dfrac{4}{5}} \right) = \dfrac{{24}}{{25}} \\\
Now, we can say that cos2A=sin4B=2425\cos 2A = \sin 4B = \dfrac{{24}}{{25}}
For option (D) we can write tan2B=sin2Bcos2B=354534\tan 2B = \dfrac{{\sin 2B}}{{\cos 2B}} = \dfrac{\dfrac{3}{5}}{\dfrac{4}{5}} \Rightarrow \dfrac{3}{4}

Therefore, we can say that option (C) and option (D) are correct options. Hence, in this question all the four options are correct.

Note:
In this question one of the important things is the conversion of AA into tanA\tan A and BB into tanB\tan B because this conversion will allow us to use the identity very effectively. The other important thing is that we have to check every option because in this question multiple answers are correct.