Solveeit Logo

Question

Question: If \[{{A}^{T}}=\left[ \begin{matrix} 3 & 4 \\\ -1 & 2 \\\ 0 & 1 \\\ \end{matrix} \r...

If AT=[34 12 01 ]{{A}^{T}}=\left[ \begin{matrix} 3 & 4 \\\ -1 & 2 \\\ 0 & 1 \\\ \end{matrix} \right] and B=[121 123 ]B=\left[ \begin{matrix} -1 & 2 & 1 \\\ 1 & 2 & 3 \\\ \end{matrix} \right]. Find the value of ATBT{{A}^{T}}-{{B}^{T}}.

Explanation

Solution

In this question, We are given with AT=[34 12 01 ]{{A}^{T}}=\left[ \begin{matrix} 3 & 4 \\\ -1 & 2 \\\ 0 & 1 \\\ \end{matrix} \right] and B=[121 123 ]B=\left[ \begin{matrix} -1 & 2 & 1 \\\ 1 & 2 & 3 \\\ \end{matrix} \right]. Now we know that if the dimension of the matrix AA is m×nm\times n, then the dimension of the matrix AT{{A}^{T}} is given by n×mn\times m. Moreover the matrix AT{{A}^{T}} is determined by the matrix AA where the corresponding rows of matrix AA becomes the corresponding columns of matrix AT{{A}^{T}}. Using this we will determine the matrix BT{{B}^{T}} and then finally we will find the matrix ATBT{{A}^{T}}-{{B}^{T}} by subtracting the elements of BT{{B}^{T}} from the corresponding elements of AT{{A}^{T}} only of dimension of both the matrices are same.

Complete step-by-step answer:
We are given with AT=[34 12 01 ]{{A}^{T}}=\left[ \begin{matrix} 3 & 4 \\\ -1 & 2 \\\ 0 & 1 \\\ \end{matrix} \right] and B=[121 123 ]B=\left[ \begin{matrix} -1 & 2 & 1 \\\ 1 & 2 & 3 \\\ \end{matrix} \right].
Now we can see there are 3 rows and 2 columns in the matrix AT{{A}^{T}}.
Thus the dimension of the matrix AT{{A}^{T}} is given by 3×23\times 2.

Also since there are 2 rows and 3 columns in the matrix BB, thus the dimension of the matrix BB is given by 2×32\times 3.
Now using the fact that if the dimension of matrix AA is m×nm\times n, then the dimension of the matrix AT{{A}^{T}} is given by n×mn\times m.
We have that the dimension of BT{{B}^{T}} is given by 3×23\times 2.
That is there are 3 rows and 2 columns in the matrix BT{{B}^{T}}.
Also since we know that matrix AT{{A}^{T}} is determined by the matrix AA where the corresponding rows of matrix AA becomes the corresponding columns of matrix AT{{A}^{T}}.
We will then determine the matrix BT{{B}^{T}} from the matrix BB.
Now since B=[121 123 ]B=\left[ \begin{matrix} -1 & 2 & 1 \\\ 1 & 2 & 3 \\\ \end{matrix} \right], thus we have

-1 & 1 \\\ 2 & 2 \\\ 1 & 3 \\\ \end{matrix} \right]$$ Now since the dimension of both the matrices $${{A}^{T}}$$ and $${{B}^{T}}$$ is the same. i.e., $$3\times 2$$. So in order to find the matrix $${{A}^{T}}-{{B}^{T}}$$, we will have to subtract each elements of $${{B}^{T}}$$ from the corresponding elements of $${{A}^{T}}$$. Thus we get , $$\begin{aligned} & {{A}^{T}}-{{B}^{T}}=\left[ \begin{matrix} 3 & 4 \\\ -1 & 2 \\\ 0 & 1 \\\ \end{matrix} \right]-\left[ \begin{matrix} -1 & 1 \\\ 2 & 2 \\\ 1 & 3 \\\ \end{matrix} \right] \\\ & =\left[ \begin{matrix} 3-\left( -1 \right) & 4-1 \\\ -1-2 & 2-2 \\\ 0-1 & 1-3 \\\ \end{matrix} \right] \\\ & =\left[ \begin{matrix} 4 & 3 \\\ -3 & 0 \\\ -1 & -2 \\\ \end{matrix} \right] \end{aligned}$$ Hence we finally have $${{A}^{T}}-{{B}^{T}}=\left[ \begin{matrix} 4 & 3 \\\ -3 & 0 \\\ -1 & -2 \\\ \end{matrix} \right]$$. **Note:** In this problem, take care of the fact that dimensions of matrices have to be the same in order to add them or subtract them. In this case the dimension of the matrices $${{A}^{T}}$$ and $$B$$ are not the same. Hence we cannot add or subtract them.