Solveeit Logo

Question

Question: If a system of equation – ax + y + z = 0, x –by + z = 0 x + y – cz = 0(a, b,c ¹ –1) has a non-zero ...

If a system of equation – ax + y + z = 0, x –by + z = 0

x + y – cz = 0(a, b,c ¹ –1) has a non-zero solution then

11+a\frac{1}{1 + a} + 11+b\frac{1}{1 + b} + 11+c\frac{1}{1 + c} =

A

0

B

1

C

2

D

3

Answer

1

Explanation

Solution

D = a111b111c\begin{matrix} –a & 1 & 1 \\ 1 & –b & 1 \\ 1 & 1 & –c \end{matrix}= 0 for non-zero solution

Ž abc – a – b – c – 2 = 0 Ž abc = a + b + c + 2

Now, 11+a\frac{1}{1 + a} + 11+b\frac{1}{1 + b} + 11+c\frac{1}{1 + c}

=3+2(a+b+c)+(ab+bc+ac)1+(a+b+c)+(ab+bc+ac)+abc\frac{3 + 2(a + b + c) + (ab + bc + ac)}{1 + (a + b + c) + (ab + bc + ac) + abc}

= 3+2(a+b+c)+(ab+bc+ac)1+2(a+b+c)+2+ab+bc+ac\frac{3 + 2(a + b + c) + (ab + bc + ac)}{1 + 2(a + b + c) + 2 + ab + bc + ac} = 1