Solveeit Logo

Question

Mathematics Question on Sequence and series

If A =\sum_{n=1}^{\infty}$$\frac{1}{( 3 + (-1)^n)^n} and B = n=1\sum_{n=1}^{\infty} (1)n(3+(1)n)n\frac{(-1)^n}{( 3 + (-1)^n)^n} ,
then A/B is equal to :

A

119\frac{11}{9}

B

11

C

119\frac{-11}{9}

D

113\frac{-11}{3}

Answer

119\frac{-11}{9}

Explanation

Solution

The correct answer is (C) : 119\frac{-11}{9}
A = \sum_{n=1}^{\infty} $$\frac{1}{( 3 + (-1)^n)^n}
and
B = n=1\sum_{n=1}^{\infty} (1)n(3+(1)n)n\frac{(-1)^n}{( 3 + (-1)^n)^n} ,
A = 12\frac{1}{2} ++ 142\frac{1}{4^2} ++ 123\frac{1}{2^3} ++ 144\frac{1}{4^4} ++ ......
B = 12\frac{-1}{2} ++ 142\frac{1}{4^2} - 123\frac{1}{2^3} ++ 144\frac{1}{4^4} ++ ......
A = 12114\frac{\frac{1}{2}}{1-\frac{1}{4}} ++ 1161116\frac{\frac{1}{16}}{1-\frac{1}{16}} , B = 12114\frac{-\frac{1}{2}}{1-\frac{1}{4}} ++ 1161116\frac{\frac{1}{16}}{1-\frac{1}{16}}
A = 1115\frac{11}{15}, B = 915\frac{-9}{15}
AB\frac{A}{B} = 119\frac{-11}{9}