Solveeit Logo

Question

Question: If a straight line makes angles \(\alpha ,\beta \text{,}\gamma \) with the coordinate axes then \(\d...

If a straight line makes angles α,β,γ\alpha ,\beta \text{,}\gamma with the coordinate axes then 1tan2α1+tan2α+1sec2β2sin2γ\dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\alpha }+\dfrac{1}{\sec 2\beta }-2{{\sin }^{2}}\gamma is equal to.
A. -1
B. -2
C. 2
D. 0

Explanation

Solution

Hint: First of all, use the formula cos2α+cos2β+cos2γ=1{{\cos }^{2}}\alpha +{{\cos }^{2}}\beta +{{\cos }^{2}}\gamma =1. Convert cos2α{{\cos }^{2}}\alpha in terms of cos2α\cos 2\alpha by using the formula 1+cos2α2\dfrac{1+\cos 2\alpha }{2}. Then, convert cos2α\cos 2\alpha in terms of tan2α{{\tan }^{2}}\alpha by using the formula cos2α=1tan2α1+tan2α\cos 2\alpha =\dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\alpha }.

Complete step-by-step answer:

We have been given that a straight line makes angles α,β,γ\alpha ,\beta ,\gamma with the coordinate axes.
Here, we have to use general formulas like 1+cos2θ=2cos2θ1+\cos 2\theta =2{{\cos }^{2}}\theta ,cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1,cos2θ=1tan2θ1+tan2θ\cos 2\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta } and secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta }.
Before proceeding with the question, we must know that the direction cosines of a line are given by cosα,cosβ,cosγ\cos \alpha ,\cos \beta ,\cos \gamma and the sum of squares of the direction cosines of a line is equal to 1.
cos2α+cos2β+cos2γ=1.....(i)\therefore {{\cos }^{2}}\alpha +{{\cos }^{2}}\beta +{{\cos }^{2}}\gamma =1.....(i)
We know that cos2α=1+cos2α2{{\cos }^{2}}\alpha =\dfrac{1+\cos 2\alpha }{2} ,cos2β=1+cos2β2{{\cos }^{2}}\beta =\dfrac{1+\cos 2\beta }{2} . Therefore, we can substitute this value of cos2α{{\cos }^{2}}\alpha and cos2β{{\cos }^{2}}\beta in equation (i) as below,
1+cos2α2+1+cos2β2+cos2γ=1.....(ii)\Rightarrow \dfrac{1+\cos 2\alpha }{2}+\dfrac{1+\cos 2\beta }{2}+{{\cos }^{2}}\gamma =1.....(ii)
We know that cos2γ+sin2γ=1{{\cos }^{2}}\gamma +{{\sin }^{2}}\gamma =1 therefore, we can replace cos2γ{{\cos }^{2}}\gamma ascos2γ=1sin2γ{{\cos }^{2}}\gamma =1-{{\sin }^{2}}\gamma in equation (ii).
1+cos2α2+1+cos2β2+1sin2γ=1\Rightarrow \dfrac{1+\cos 2\alpha }{2}+\dfrac{1+\cos 2\beta }{2}+1-{{\sin }^{2}}\gamma =1
We can take LCM of denominators to perform the basic addition of fractions.
1+cos2α+1+cos2β+22sin2γ2=1\Rightarrow \dfrac{1+\cos 2\alpha +1+\cos 2\beta +2-2{{\sin }^{2}}\gamma }{2}=1
Now, cross multiplying the above equation we get:
1+cos2α+1+cos2β+22sin2γ=2.....(iii)\Rightarrow 1+\cos 2\alpha +1+\cos 2\beta +2-2{{\sin }^{2}}\gamma =2.....(iii)
We know that cos2α=1tan2α1+tan2α\cos 2\alpha =\dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\alpha } . Therefore, we can replace cos2α\cos 2\alpha as 1tan2α1+tan2α\dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\alpha } in equation (iii) and we will get,
1+1tan2α1+tan2α+1+cos2β+22sin2γ=2\Rightarrow 1+\dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\alpha }+1+\cos 2\beta +2-2{{\sin }^{2}}\gamma =2
1tan2α1+tan2α+4+cos2β2sin2γ=2......(iv)\Rightarrow \dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\alpha }+4+\cos 2\beta -2{{\sin }^{2}}\gamma =2......(iv)
We can replace cos2β\cos 2\beta with 1sec2β\dfrac{1}{\sec 2\beta } in the equation (iv) and we will get,
1tan2α1+tan2β+4+1sec2β2sin2γ=2\Rightarrow \dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\beta }+4+\dfrac{1}{\sec 2\beta }-2{{\sin }^{2}}\gamma =2
1tan2α1+tan2α+1sec2β2sin2γ=2\Rightarrow \dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\alpha }+\dfrac{1}{\sec 2\beta }-2{{\sin }^{2}}\gamma =-2
1tan2α1+tan2β+1sec2β2sin2γ=2\therefore \dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\beta }+\dfrac{1}{\sec 2\beta }-2{{\sin }^{2}}\gamma =-2
Therefore, we have found the value of 1tan2α1+tan2α+1sec2β2sin2γ\dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\alpha }+\dfrac{1}{\sec 2\beta }-2{{\sin }^{2}}\gamma as -2
Hence, the answer of the required question is option C.

Note: We have an alternate method for this question. We know that the maximum value of tanα=\tan \alpha =\infty , secβ=\sec \beta =\infty and sin2γ=1{{\sin }^{2}}\gamma =1 . Therefore, just putting the maximum values of tanα=\tan \alpha =\infty ,secβ=\sec \beta =\infty ,sin2γ=1{{\sin }^{2}}\gamma =1 in the question, we get
1+12  \begin{aligned} & \dfrac{1}{\infty }+\dfrac{1}{\infty }-2 \\\ & \\\ \end{aligned}
Therefore, we get the answer as -2, which is option C.
The whole question is concerned with angles and trigonometric identities. So, you must be able to recall all the formulas of trigonometric identities. If in question you are given any of the angles either α,β,γ\alpha , \beta ,\gamma , just check once by putting the values with their respective trigonometric ratios because in some cases we get the denominator as 0. In that case, if you have an option not defined then go for that option.