Solveeit Logo

Question

Question: If a stone is to hit at a point which is at a horizontal distance d away and at a height h above the...

If a stone is to hit at a point which is at a horizontal distance d away and at a height h above the point from where the stone starts, then what is the value of initial speed u if the stone is launched at an angle q ?

A

gcosθ\frac { \mathrm { g } } { \cos \theta } d2(dtanθh)\sqrt{\frac{d}{2(d\tan\theta - h)}}

B

dcosθ\frac { d } { \cos \theta } g2(dtanθh)\sqrt{\frac{g}{2(d\tan\theta - h)}}

C

gd2hcos2θ\sqrt{\frac{gd^{2}}{h\cos^{2}\theta}}

D

gd2dh\sqrt{\frac{gd^{2}}{d - h}}

Answer

dcosθ\frac { d } { \cos \theta } g2(dtanθh)\sqrt{\frac{g}{2(d\tan\theta - h)}}

Explanation

Solution

Q y = x tan q – gx22u2cos2θ\frac { \mathrm { gx } ^ { 2 } } { 2 \mathrm { u } ^ { 2 } \cos ^ { 2 } \theta }

Here h = d tan q – gd22u2cos2θ\frac { g d ^ { 2 } } { 2 u ^ { 2 } \cos ^ { 2 } \theta }

gd22u2cos2θ\frac { g d ^ { 2 } } { 2 u ^ { 2 } \cos ^ { 2 } \theta } = (d tan q –h)

or u2 = gd22cos2θ(dtanθh)\frac { g d ^ { 2 } } { 2 \cos ^ { 2 } \theta ( d \tan \theta - h ) }

or u = dcosθ\frac { d } { \cos \theta } g2(dtanθh)\sqrt { \frac { g } { 2 ( d \tan \theta - h ) } }