Solveeit Logo

Question

Chemistry Question on Unit Cells

If �a� stands for the edge length of the cubic systems : simple cubic, body centred cubic and face centred cubic, then the ratio of radii of the spheres in these systems will be respectively,

A

12a:34a:122a\frac{1}{2} a: \frac{\sqrt{3}}{4} a:\frac{1}{2\sqrt{2}} a

B

12a:3a:12a\frac{1}{2} a: \sqrt{3}a: \frac{1}{\sqrt{2}}a

C

12a:32a:32a\frac{1}{2} a: \frac{\sqrt{3}}{2} a:\frac{\sqrt{3}}{2} a

D

1a:3a:2a1a : \sqrt{3}a: \sqrt{2}a

Answer

12a:34a:122a\frac{1}{2} a: \frac{\sqrt{3}}{4} a:\frac{1}{2\sqrt{2}} a

Explanation

Solution

Following generalization can be easily derived for various types of lattice arrangements in cubic cells between the edge length (a) of the cell and r the radius of the sphere.
For simple cubic:a=2rorr=a2a=2r \,or \, r=\frac{a}{2}
For body centred cubic :a=22rorr=122aa=2 \sqrt{2}r \,or\, r=\frac{1}{2\sqrt{2}} a
Thus the ratio of radii of spheres for these will be
simple: bcc: fcc
=a2:34a:122ai.e.=\frac{a}{2} :\frac{\sqrt{3}}{4} a: \frac{1}{2\sqrt{2}} a i.e.
option (a) is correct answer.