Solveeit Logo

Question

Physics Question on rotational motion

If a sphere is rolling, the ratio of its rotational energy to the total kinetic energy is given by

A

7:10

B

2:05

C

10:07

D

2:07

Answer

2:07

Explanation

Solution

For a solid sphere rolling down Translation KE=12Mv2KE =\frac{1}{2} M v^{2}
Rotational KE=12Iω2K E=\frac{1}{2} I \omega^{2}
=12[25MR2][vR]2=\frac{1}{2}\left[\frac{2}{5} M R^{2}\right]\left[\frac{v}{R}\right]^{2}
[ As for a sphere  I=25MR2]\begin{bmatrix}\text { As for a sphere } \\\ I=\frac{2}{5} M R^{2}\end{bmatrix}
\therefore Total kinetic energy of rolling is
12Mv2+15Mv2=710Mv2\frac{1}{2} M v^{2}+\frac{1}{5} M v^{2}=\frac{7}{10} M v^{2}
\therefore Ratio of rotational kinetic energy to total
kinetic energy =15Mv2710Mv2=27=\frac{\frac{1}{5} M v^{2}}{\frac{7}{10} M v^{2}}=\frac{2}{7}