Solveeit Logo

Question

Mathematics Question on Geometry

If a solid sphere of radius 10 cm is moulded into 8 spherical solid balls of equal radius then the surface area of each ball is

A

60 π\pi cm2

B

π50π\frac{\pi}{50\pi} cm2

C

75 π\pi cm2

D

π100πcm2\frac{\pi}{100\pi}cm^2

Answer

π100πcm2\frac{\pi}{100\pi}cm^2

Explanation

Solution

The correct option is (D): π100πcm2\frac{\pi}{100\pi}cm^2
Let's solve the problem step by step without using LaTeX:

Step 1: Volume of the original sphere

Volume of sphere=43×π×radius3\text{Volume of sphere} = \frac{4}{3} \times \pi \times \text{radius}^3

For the original sphere with a radius of 10 cm:

Volume=43×π×(10)3=43×π×1000=40003πcubic cm\text{Volume} = \frac{4}{3} \times \pi \times (10)^3 = \frac{4}{3} \times \pi \times 1000 = \frac{4000}{3} \pi \, \text{cubic cm}
Since the large sphere is moulded into 8 equal spherical balls, the volume of each small ball will be:

Volume of each small ball=18×40003π=5003πcubic cm\text{Volume of each small ball} = \frac{1}{8} \times \frac{4000}{3} \pi = \frac{500}{3} \pi \, \text{cubic cm}

Volume of small ball=43×π×small radius3\text{Volume of small ball} = \frac{4}{3} \times \pi \times \text{small radius}^3

Equating the volume of the small ball to 5003π\frac{500}{3} \pi we get:

43×π×(small radius)3=5003π\frac{4}{3} \times \pi \times (\text{small radius})^3 = \frac{500}{3} \pi

43×(small radius)3=5003\frac{4}{3} \times (\text{small radius})^3 = \frac{500}{3}

(small radius)3=5004=125(\text{small radius})^3 = \frac{500}{4} = 125

small radius=1253=5cm\text{small radius} = \sqrt[3]{125} = 5 \, \text{cm}

Step 4: Find the surface area of each small ball
The surface area of a sphere is given by the formula:

Surface area=4×π×radius2\text{Surface area} = 4 \times \pi \times \text{radius}^2

For each small ball with a radius of 5 cm:

Surface area=4×π×(5)2=4×π×25=100π2cm\text{Surface area} = 4 \times \pi \times (5)^2 = 4 \times \pi \times 25 = 100 \pi^2 \, \text{cm}

So, the surface area of each ball is 100π2cm100\pi^2 cm.