Solveeit Logo

Question

Question: If \[a\sin x + b\cos (x + \theta ) + b\cos (x - \theta ) = d\], then the value of \[\left| {\cos \th...

If asinx+bcos(x+θ)+bcos(xθ)=da\sin x + b\cos (x + \theta ) + b\cos (x - \theta ) = d, then the value of cosθ\left| {\cos \theta } \right| is equal to.

Explanation

Solution

We need to simplify such equation using trigonometric functions
Sum of the trigonometric functions can be formulated as:
Cos(A+B)+Cos(AB)=2CosACosBCos(A + B) + \operatorname{Cos} (A - B) = 2\operatorname{Cos} A\operatorname{Cos} B
We know that the value of a Sinθ+BCosθ\operatorname{Sin} \theta + B\operatorname{Cos} \theta lies between: a2+b2aSinθ+bcosθa2+b2- \sqrt {{a^2} + {b^2}} \leqslant a\operatorname{Sin} \theta + b\cos \theta \leqslant \sqrt {{a^2} + {b^2}}.

Complete step-by- step solution:
We have,
aSinθ+bcos(x+θ)+bcos(xθ)d.............eqn(1)\Rightarrow a\operatorname{Sin} \theta + b\cos (x + \theta ) + b\cos (x - \theta ) - d.............eqn(1)
Taking out b common fromeqn(1)eqn(1), we get
aSinθ+b[cos(x+θ)+cos(xθ)]d...............eqn(2)\Rightarrow a\operatorname{Sin} \theta + b\left[ {\cos (x + \theta ) + \cos (x - \theta )} \right] - d...............eqn(2)
We know, Cos(xθ)+Cos(xθ)=2CosxCosθ...........eqn(3)Cos(x - \theta ) + \operatorname{Cos} (x - \theta ) = 2Cosx\,Cos\theta ...........eqn(3)
Using the value of eqn(3)eqn(3)ineqn(2)eqn(2), we get
asinx+b[2CosxCosθ]=da\sin x + b\left[ {2Cosx\,\operatorname{Cos} \theta } \right] = d
asinx+b[2bCosxCosθ]=d........eqn(4)\Rightarrow a\sin x + b\left[ {2bCosx\,\operatorname{Cos} \theta } \right] = d........eqn(4)
As asinθ+bCosθa\sin \theta + b\operatorname{Cos} \theta lies between a2+b2aSinθ+bCosθa2+b2- \sqrt {{a^2} + {b^2}} \leqslant a\operatorname{Sin} \theta + b\operatorname{Cos} \theta \leqslant \sqrt {{a^2} + {b^2}}
asinθ+bcosθa2+b2........eqn(5)\Rightarrow \left| {a\sin \theta + b\cos \theta } \right| \leqslant \sqrt {{a^2} + {b^2}} ........eqn(5)
Compareasinθ+bcosθa\sin \theta + b\cos \theta with asinx+(2bCosθ)Cosxa\sin x + (2b\operatorname{Cos} \theta )\operatorname{Cos} x
We get, a=aa = a and b=2bCosθ........eqn(6)b = 2b\operatorname{Cos} \theta ........eqn(6)
Using the value of eqneqn (6) and (4) in (5), we have a\sin \theta + b\cos \theta = d,$$$$a = aand b=2bCosθb = 2b\operatorname{Cos} \theta
da2+(2bcosθ)2\Rightarrow \left| d \right| \leqslant \sqrt {{a^2} + {{(2b\cos \theta )}^2}}
da2+4b2Cos2θ\Rightarrow \left| d \right| \leqslant \sqrt {{a^2} + 4{b^2}Co{s^2}\theta }
On squaring both sides
d2a2+4b2Cos2θ\Rightarrow {d^2} \leqslant {a^2} + 4{b^2}Co{s^2}\theta
d2a24b2Cos2θ\Rightarrow {d^2} - {a^2} \leqslant 4{b^2}Co{s^2}\theta
d2a24b2Cos2θ\Rightarrow \dfrac{{{d^2} - {a^2}}}{{4{b^2}}} \leqslant Co{s^2}\theta
Taking under root on both sides
.Cosθd2a24b2\left| {\operatorname{Cos} \theta } \right| \geqslant \dfrac{{\sqrt {{d^2} - {a^2}} }}{{\sqrt {4{b^2}} }}

\\\ \left| {\operatorname{Cos} \theta } \right| \geqslant \dfrac{{\sqrt {{d^2} - {a^2}} }}{{2\left| b \right|}} \\\ \end{gathered} $$ Hence $$\left| {\operatorname{Cos} \theta } \right| = \dfrac{1}{{2\left| b \right|}}\sqrt {{d^2} - {a^2}} $$ **Note:** Recall that in its basic form $$\,f(x) = \,|x|,\,$$ The absolute value function is one of our tool kit functions. The absolute value function is commonly thought of as providing the distance the number is from zero on a number line. Algebraically, for whatever the input value is, the output is the value without regard to sign. Knowing this, we can use absolute value functions to solve some kinds of real-world problems. Modulus operation on function converts negative function values to positive function values with equal magnitude. As such, we draw a graph of the modulus function by taking a mirror image of the corresponding core graph in x-axis. We need under that if x lies between $$ - a < x < a$$ then $$\left| a \right| \leqslant x.$$