Question
Question: If \[a\sin x + b\cos (x + \theta ) + b\cos (x - \theta ) = d\], then the value of \[\left| {\cos \th...
If asinx+bcos(x+θ)+bcos(x−θ)=d, then the value of ∣cosθ∣ is equal to.
Solution
We need to simplify such equation using trigonometric functions
Sum of the trigonometric functions can be formulated as:
Cos(A+B)+Cos(A−B)=2CosACosB
We know that the value of a Sinθ+BCosθ lies between: −a2+b2⩽aSinθ+bcosθ⩽a2+b2.
Complete step-by- step solution:
We have,
⇒aSinθ+bcos(x+θ)+bcos(x−θ)−d.............eqn(1)
Taking out b common fromeqn(1), we get
⇒aSinθ+b[cos(x+θ)+cos(x−θ)]−d...............eqn(2)
We know, Cos(x−θ)+Cos(x−θ)=2CosxCosθ...........eqn(3)
Using the value of eqn(3)ineqn(2), we get
asinx+b[2CosxCosθ]=d
⇒asinx+b[2bCosxCosθ]=d........eqn(4)
As asinθ+bCosθ lies between −a2+b2⩽aSinθ+bCosθ⩽a2+b2
⇒∣asinθ+bcosθ∣⩽a2+b2........eqn(5)
Compareasinθ+bcosθ with asinx+(2bCosθ)Cosx
We get, a=a and b=2bCosθ........eqn(6)
Using the value of eqn (6) and (4) in (5), we have a\sin \theta + b\cos \theta = d,$$$$a = aand b=2bCosθ
⇒∣d∣⩽a2+(2bcosθ)2
⇒∣d∣⩽a2+4b2Cos2θ
On squaring both sides
⇒d2⩽a2+4b2Cos2θ
⇒d2−a2⩽4b2Cos2θ
⇒4b2d2−a2⩽Cos2θ
Taking under root on both sides
.∣Cosθ∣⩾4b2d2−a2