Solveeit Logo

Question

Question: If \(a\sin \theta + b\cos \theta = c\), then prove that, \(a\cos \theta - b\sin \theta = \sqrt {{a^2...

If asinθ+bcosθ=ca\sin \theta + b\cos \theta = c, then prove that, acosθbsinθ=a2+b2c2a\cos \theta - b\sin \theta = \sqrt {{a^2} + {b^2} - {c^2}}

Explanation

Solution

To find the value of, acosθbsinθ=a2+b2c2a\cos \theta - b\sin \theta = \sqrt {{a^2} + {b^2} - {c^2}} , we use the formula of trigonometric identities like sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1and we use the formula of expansion of a term of the form (a+b)2{\left( {a + b} \right)^2} We use these formula to expand the given term and rearrange it to find the answer.

Complete step-by-step answer:
Given that,
asinθ+bcosθ=ca\sin \theta + b\cos \theta = c ……. (i)
Squaring on both sides of equation (i), we will get
(asinθ+bcosθ)2=c2\Rightarrow {\left( {a\sin \theta + b\cos \theta } \right)^2} = {c^2}
Using the identity of (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab, we can write this as:
a2sin2θ+b2cos2θ+2absinθcosθ=c2\Rightarrow {a^2}{\sin ^2}\theta + {b^2}{\cos ^2}\theta + 2ab\sin \theta \cos \theta = {c^2}
a2sin2θ+b2cos2θ+2absinθcosθ=c2\Rightarrow {a^2}{\sin ^2}\theta + {b^2}{\cos ^2}\theta + 2ab\sin \theta \cos \theta = {c^2} ………. (ii)
We know that,sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
From this, we will get sin2θ=1cos2θ{\sin ^2}\theta = 1 - {\cos ^2}\theta and cos2θ=1sin2θ{\cos ^2}\theta = 1 - {\sin ^2}\theta
putting this in equation (ii), we will get
a2(1cos2θ)+b2(1sin2θ)+2absinθcosθ=c2\Rightarrow {a^2}\left( {1 - {{\cos }^2}\theta } \right) + {b^2}\left( {1 - {{\sin }^2}\theta } \right) + 2ab\sin \theta \cos \theta = {c^2}
a2a2cos2θ+b2b2sin2θ+2absinθcosθ=c2\Rightarrow {a^2} - {a^2}{\cos ^2}\theta + {b^2} - {b^2}{\sin ^2}\theta + 2ab\sin \theta \cos \theta = {c^2}
a2+b2c2=a2cos2θ+b2sin2θ2absinθcosθ\Rightarrow {a^2} + {b^2} - {c^2} = {a^2}{\cos ^2}\theta + {b^2}{\sin ^2}\theta - 2ab\sin \theta \cos \theta
Here, we can see that the term a2cos2θ+b2sin2θ2absinθcosθ{a^2}{\cos ^2}\theta + {b^2}{\sin ^2}\theta - 2ab\sin \theta \cos \theta is the form of (acosθbsinθ)2{\left( {a\cos \theta - b\sin \theta } \right)^2}
So, replacing a2cos2θ+b2sin2θ2absinθcosθ{a^2}{\cos ^2}\theta + {b^2}{\sin ^2}\theta - 2ab\sin \theta \cos \theta by (acosθbsinθ)2{\left( {a\cos \theta - b\sin \theta } \right)^2}, we will get
a2+b2c2=(acosθbsinθ)2\Rightarrow {a^2} + {b^2} - {c^2} = {\left( {a\cos \theta - b\sin \theta } \right)^2}
Now, taking square root on both sides, we will get
a2+b2c2=(acosθbsinθ)\Rightarrow \sqrt {{a^2} + {b^2} - {c^2}} = \left( {a\cos \theta - b\sin \theta } \right)
Hence proved.

Note: In order to solve this type of problems the key is to know the formulae of the respective trigonometric identities and the formulae of expansion of terms. The most important step is to square on both sides to the given trigonometric equation, later we apply the formula to rearrange all the terms in order to determine the answer.