Solveeit Logo

Question

Question: If \[A=\sin {{45}^{\circ }}\sin {{12}^{\circ }};B=\cos {{45}^{\circ }}\cos {{12}^{\circ }};C=\cos {{...

If A=sin45sin12;B=cos45cos12;C=cos66+sin84,A=\sin {{45}^{\circ }}\sin {{12}^{\circ }};B=\cos {{45}^{\circ }}\cos {{12}^{\circ }};C=\cos {{66}^{\circ }}+\sin {{84}^{\circ }}, then descending order of these values is
A. C, A, B
B. C, B, A
C. A, C, B
D. A, B, C

Explanation

Solution

Value of sin45\sin {{45}^{\circ }} and cos45\cos {{45}^{\circ }} are 12\dfrac{1}{\sqrt{2}} of each. sinθ\sin \theta Is increasing in domain [0,π2]\left[ 0,\dfrac{\pi }{2} \right] and cosθ\cos \theta is decreasing in the same domain. Value of sinθ=0,sinπ2=1,cos0=1,cosπ2=0\sin \theta =0,\sin \dfrac{\pi }{2}=1,\cos 0=1,\cos \dfrac{\pi }{2}=0 and sinπ4=cosπ4=12\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}} . If we multiply any number with a number between (0,1)\left( 0,1 \right) , the number will become smaller, but if the number is multiplied with a number that is greater than 0, the new number becomes larger than the previous number. Use these concepts to solve the problem.

Complete step-by-step answer:
We are given values A, B, C in the problem are

A=sin45sin12A=\sin {{45}^{\circ }}\sin {{12}^{\circ }} \to (1)
B=cos45cos12B=\cos {{45}^{\circ }}\cos {{12}^{\circ }} \to (2)
C=cos66+sin84C=\cos {{66}^{\circ }}+\sin {{84}^{\circ }} \to (3)

We know value of sin45\sin {{45}^{\circ }} and cos45\cos {{45}^{\circ }} are 12\dfrac{1}{\sqrt{2}} of each.
Hence, we can put sin45=12\sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} in equation (1). We get
A=12sin12A=\dfrac{1}{\sqrt{2}}\sin {{12}^{\circ }} \to (4)

Similarly, we can get value of B as

B=cos45cos12B=\cos {{45}^{\circ }}\cos {{12}^{\circ }}

B=12cos12B=\dfrac{1}{\sqrt{2}}\cos {{12}^{\circ }}

B=cos122B=\dfrac{\cos {{12}^{\circ }}}{\sqrt{2}} \to (5)

Now, as we know sinθ\sin \theta is an increasing function from 0 to 90{{90}^{\circ }} and value of sin0=0\sin {{0}^{\circ }}=0 ,
sin45=12\sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} And sin90=1\sin {{90}^{\circ }}=1 .
One other hand cosθ\cos \theta is decreasing function and values of cos0=1\cos {{0}^{\circ }}=1 , cos45=12\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} and cos90=0\cos {{90}^{\circ }}=0 .
It means sinθ>cosθ\sin \theta >\cos \theta for the range 45{{45}^{\circ }} to 90{{90}^{\circ }} and cosθ>sinθ\cos \theta >\sin \theta for the range 0{{0}^{\circ }} to 45{{45}^{\circ }} .
So, we get,

cos12>sin12\cos {{12}^{\circ }}>\sin {{12}^{\circ }}

Multiply by 12\dfrac{1}{\sqrt{2}} to both sides of the above equation. We get

cos122>sin122\dfrac{\cos {{12}^{\circ }}}{\sqrt{2}}>\dfrac{\sin {{12}^{\circ }}}{\sqrt{2}}

Here B>AB>A \to (6)
Now, we have

C=cos66+sin84C=\cos {{66}^{\circ }}+\sin {{84}^{\circ }}

We know

sin(90θ)=cosθ\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta

Put θ=6\theta ={{6}^{\circ }} , we get

sin(906)=cos6\sin \left( {{90}^{\circ }}-6 \right)=\cos {{6}^{\circ }}

sin84=cos6\sin {{84}^{\circ }}=\cos {{6}^{\circ }}

Hence, we can rewrite expression ‘C’ as

C=cos66+cos6C=\cos {{66}^{\circ }}+\cos {{6}^{\circ }}

We know the trigonometric identity of cosx+cosy\cos x+\cos y , can be given as

cosx+cosy=2cos(x+y2)cos(xy2)\cos x+\cos y=2\cos \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right)

So, we can simplify ‘C’ as

C=2cos(66+62)cos(6662)C=2\cos \left( \dfrac{66+6}{2} \right)\cos \left( \dfrac{66-6}{2} \right)

C=2cos36cos30C=2\cos {{36}^{\circ }}\cos {{30}^{\circ }}
We know cos30=32\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}
So, we get

C=232cos36C=\dfrac{2\sqrt{3}}{2}\cos {{36}^{\circ }}

C=3cos36C=\sqrt{3}\cos {{36}^{\circ }} \to (7)

So, as we know cosine is a decreasing function for [0,90]\left[ 0,{{90}^{\circ }} \right] .
So, we get
cos12>cos36\cos {{12}^{\circ }}>\cos {{36}^{\circ }}
Now, if we multiply cos12\cos {{12}^{\circ }} by 12\dfrac{1}{\sqrt{2}} (smaller than 1), the term 12cos12\dfrac{1}{\sqrt{2}}\cos {{12}^{\circ }} becomes less and as 12=cos45\dfrac{1}{\sqrt{2}}=\cos {{45}^{\circ }} , it means the term cos45cos12\cos {{45}^{\circ }}\cos {{12}^{\circ }} will be less than cos45\cos {{45}^{\circ }} as cos12\cos {{12}^{\circ }} will also belong to (0,1)\left( 0,1 \right) . It means the term 12cos12\dfrac{1}{\sqrt{2}}\cos {{12}^{\circ }} will be less than cos36\cos {{36}^{\circ }} as well, if cos122\dfrac{\cos {{12}^{\circ }}}{\sqrt{2}} is less than cos45\cos {{45}^{\circ }} as cosine is a decreasing function. So, we get

cos122<cos36\dfrac{\cos {{12}^{\circ }}}{\sqrt{2}}<\cos {{36}^{\circ }}

Or, cos122<3cos36\dfrac{\cos {{12}^{\circ }}}{\sqrt{2}}<\sqrt{3}\cos {{36}^{\circ }}
We multiplied by 3\sqrt{3} , as 3\sqrt{3} is greater than 1, so, 3cos36\sqrt{3}\cos {{36}^{\circ }} will be higher than cos36\cos {{36}^{\circ }} , hence no change in inequality.
Hence, we get

sin122<cos122<3cos36\dfrac{\sin {{12}^{\circ }}}{\sqrt{2}}<\dfrac{\cos {{12}^{\circ }}}{\sqrt{2}}<\sqrt{3}\cos {{36}^{\circ }}

& A < B < C \\\ & or \\\ & C > B > A \\\ \end{aligned}$$ Hence, the decreasing order of A, B, C is C, B, A. So, option (b) is correct. **So, the correct answer is “Option (b)”.** **Note:** Relating $$\cos {{45}^{\circ }}\cos {{12}^{\circ }}$$ and $$\sqrt{3}\cos {{36}^{\circ }}$$ is the key point of the question. It uses the concept that if any number gets multiplied by a number less than 1, then the result becomes less than the number and if any number is multiplied with a number greater than 1, then the number will become larger than the previous number. One may try to calculate exact values of the given expressions, but it is a really difficult and complex approach. So, don’t try to calculate exact values of them, just relate them.