Solveeit Logo

Question

Question: If \(A = \sin {15^\circ } + \cos {15^\circ },B = \tan {15^\circ } + \cot {15^\circ },C = \tan 22{\df...

If A=sin15+cos15,B=tan15+cot15,C=tan2212cot2212A = \sin {15^\circ } + \cos {15^\circ },B = \tan {15^\circ } + \cot {15^\circ },C = \tan 22{\dfrac{1}{2}^\circ } - \cot 22{\dfrac{1}{2}^\circ } then the descending order is

(a) A,B,C

(b) B,A,C

(c) C,B,A

(d) B,C,A

Explanation

Solution

For finding the value of sin15\sin {15^\circ } use sin(ab)=sinacosbcosasinb\sin (a - b) = \sin a\cos b - \cos a\sin b , If we put a=45,b=30a = {45^\circ },b = {30^\circ } then we will find the value of sin15\sin {15^\circ }hence cos15=1sin215\cos {15^\circ } = \sqrt {1 - {{\sin }^2}{{15}^\circ }} . Now for the tan15\tan {15^\circ } use trigonometric identity tan(ab)=tanatanb1+tanatanb\tan (a - b) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}} If we put a=45,b=30a = {45^\circ },b = {30^\circ } from this get the value of tan15\tan {15^\circ }and cot15\cot {15^\circ }. Now for the tan2212\tan 22{\dfrac{1}{2}^\circ } we know that from the trigonometric identities tan(2a)=2tana1tan2a\tan (2a) = \dfrac{{2\tan a}}{{1 - {{\tan }^2}a}} If we put a=2212a = 22{\dfrac{1}{2}^\circ } = 22.5{22.5^\circ } and take tan22.5=x\tan {22.5^\circ } = x. Now solve, we can get the value of x.

Complete step-by-step answer:

As we know from the trigonometry identity ,

sin(ab)=sinacosbcosasinb\sin (a - b) = \sin a\cos b - \cos a\sin b

If we put a=45,b=30a = {45^\circ },b = {30^\circ } then

sin(4530)=sin45cos30cos45sin30\sin ({45^\circ } - {30^\circ }) = \sin {45^\circ }\cos {30^\circ } - \cos {45^\circ }\sin {30^\circ }

or we know that sin45=12\sin {45^\circ } = \dfrac{1}{{\sqrt 2 }} , cos30=32\cos {30^\circ } = \dfrac{{\sqrt 3 }}{2} , cos45=12\cos {45^\circ } = \dfrac{1}{{\sqrt 2 }} , sin30=12\sin {30^\circ } = \dfrac{1}{2}

By putting these values in above equation we get ,

sin(15)=12.3212.12\sin ({15^\circ }) = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2}

sin15=3122\sin {15^\circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}

Now we know that sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 or we can write as cosθ=1sin2θ\cos \theta = \sqrt {1 - {{\sin }^2}\theta }

cos15=1sin215\cos {15^\circ } = \sqrt {1 - {{\sin }^2}{{15}^\circ }}

cos15=1(3122)2\cos {15^\circ } = \sqrt {1 - {{\left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right)}^2}}

As we know that (22)2=8{(2\sqrt 2 )^2} = 8

cos15=1(31)28\cos {15^\circ } = \sqrt {1 - \dfrac{{{{(\sqrt 3 - 1)}^2}}}{8}}

cos15=8(31)28\cos {15^\circ } = \sqrt {\dfrac{{8 - {{(\sqrt 3 - 1)}^2}}}{8}}

As we know that the (31)2=3+123{(\sqrt 3 - 1)^2} = 3 + 1 - 2\sqrt 3

cos15=8(3+123)8\cos {15^\circ } = \sqrt {\dfrac{{8 - (3 + 1 - 2\sqrt 3 )}}{8}}

cos15=4+238\cos {15^\circ } = \sqrt {\dfrac{{4 + 2\sqrt 3 }}{8}}

cos15=4+2322\cos {15^\circ } = \dfrac{{\sqrt {4 + 2\sqrt 3 } }}{{2\sqrt 2 }}

A=sin15+cos15=3122+4+2322A = \sin {15^\circ } + \cos {15^\circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} + \dfrac{{\sqrt {4 + 2\sqrt 3 } }}{{2\sqrt 2 }}

Hence for the tan15\tan {15^\circ } we know that from the trigonometric identities

tan(ab)=tanatanb1+tanatanb\tan (a - b) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}

If we put a=45,b=30a = {45^\circ },b = {30^\circ } then

tan(4530)=tan45tan301+tan45tan30\tan ({45^\circ } - {30^\circ }) = \dfrac{{\tan {{45}^\circ } - \tan {{30}^\circ }}}{{1 + \tan {{45}^\circ }\tan {{30}^\circ }}}

We know that tan45=1,tan30=13\tan {45^\circ } = 1,\tan {30^\circ } = \dfrac{1}{{\sqrt 3 }} putting these values in the above equation

tan(15)=1131+1.13\tan ({15^\circ }) = \dfrac{{1 - \dfrac{1}{{\sqrt 3 }}}}{{1 + 1.\dfrac{1}{{\sqrt 3 }}}}

Take LCM

tan(15)=3133+13\tan ({15^\circ }) = \dfrac{{\dfrac{{\sqrt 3 - 1}}{{\sqrt 3 }}}}{{\dfrac{{\sqrt 3 + 1}}{{\sqrt 3 }}}}

Now 3\sqrt 3 is common in both numerator and denominator hence it will cancel out , we get

tan(15)=313+1\tan ({15^\circ }) = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}

Now multiply by 31\sqrt 3 - 1 on both numerator and denominator for rationalisation ,

tan(15)=313+1×3131\tan ({15^\circ }) = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \times \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}}

After solving this we get ,

tan(15)=(31)22\tan ({15^\circ }) = \dfrac{{{{(\sqrt 3 - 1)}^2}}}{2} or tan(15)=4232\tan ({15^\circ }) = \dfrac{{4 - 2\sqrt 3 }}{2}

or tan15=23\tan {15^\circ } = 2 - \sqrt 3

cot15=1tan15=123\cot {15^\circ } = \dfrac{1}{{\tan {{15}^\circ }}} = \dfrac{1}{{2 - \sqrt 3 }}

Now multiply by 2+32 + \sqrt 3 in both denominator and numerator for rationalisation

cot15=123×2+32+3\cot {15^\circ } = \dfrac{1}{{2 - \sqrt 3 }} \times \dfrac{{2 + \sqrt 3 }}{{2 + \sqrt 3 }}

on further solving we get ,

cot15=2+3\cot {15^\circ } = 2 + \sqrt 3

B=tan15+cot15=23+2+3=4B = \tan {15^\circ } + \cot {15^\circ } = 2 - \sqrt 3 + 2 + \sqrt 3 = 4

Hence for the tan2212\tan 22{\dfrac{1}{2}^\circ } we know that from the trigonometric identities

tan(2a)=2tana1tan2a\tan (2a) = \dfrac{{2\tan a}}{{1 - {{\tan }^2}a}}

If we put a=2212a = 22{\dfrac{1}{2}^\circ } = 22.5{22.5^\circ } then

tan(2×22.5)=2tan22.51tan222.5\tan (2 \times {22.5^\circ }) = \dfrac{{2\tan {{22.5}^\circ }}}{{1 - {{\tan }^2}{{22.5}^\circ }}}

tan(45)=2tan22.51tan222.5\tan ({45^\circ }) = \dfrac{{2\tan {{22.5}^\circ }}}{{1 - {{\tan }^2}{{22.5}^\circ }}}

let us take tan22.5=x\tan {22.5^\circ } = x then and we know that tan45=1\tan {45^\circ } = 1

1=2x1x21 = \dfrac{{2x}}{{1 - {x^2}}}

x2+2x1=0{x^2} + 2x - 1 = 0

x=b±b24ac2a=2±4+42x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} = \dfrac{{ - 2 \pm \sqrt {4 + 4} }}{2}

As tan22.5=x\tan {22.5^\circ } = x hence tan22.5\tan {22.5^\circ } is in the present in the first quadrant hence positive sign will be considered , negative will be ignored .

tan22.5=2+82=1+2\tan {22.5^\circ } = \dfrac{{ - 2 + \sqrt 8 }}{2} = - 1 + \sqrt 2

cot22.5=1tan22.5=11+2\cot {22.5^\circ } = \dfrac{1}{{\tan {{22.5}^\circ }}} = \dfrac{1}{{ - 1 + \sqrt 2 }}

Now multiple by 12- 1 - \sqrt 2 in both denominator and numerator for rationalisation

cot22.5=11+2×1212\cot {22.5^\circ } = \dfrac{1}{{ - 1 + \sqrt 2 }} \times \dfrac{{ - 1 - \sqrt 2 }}{{ - 1 - \sqrt 2 }}

on further solving we get ,

cot22.5=(1+2)(1)2(2)2=1+2\cot {22.5^\circ } = \dfrac{{ - (1 + \sqrt 2 )}}{{{{( - 1)}^2} - {{(\sqrt 2 )}^2}}} = 1 + \sqrt 2

C=tan2212cot2212=1+2(1+2)=2C = \tan 22{\dfrac{1}{2}^\circ } - \cot 22{\dfrac{1}{2}^\circ } = - 1 + \sqrt 2 - (1 + \sqrt 2 ) = - 2

Hence from above we get

A=3122+4+2322A = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} + \dfrac{{\sqrt {4 + 2\sqrt 3 } }}{{2\sqrt 2 }}

B=4B = 4

C=2C = - 2

As C is the negative hence it is smallest .

In A=sin15+cos15=3122+4+2322A = \sin {15^\circ } + \cos {15^\circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} + \dfrac{{\sqrt {4 + 2\sqrt 3 } }}{{2\sqrt 2 }} hence the max value of Sin and Cos is 11 it did not be greater than 22 at any cost hence , B is the greatest than A and at last C , C < A < B or In descending order B,A,C.

So, the correct answer is “Option (b)”.

Note: In the finding the value of tan(15)\tan ({15^\circ }) we will also the formula tan(2a)=2tana1tan2a\tan (2a) = \dfrac{{2\tan a}}{{1 - {{\tan }^2}a}} by putting the value of a=15a = {15^\circ } hence solve it as we solve in finding the value of value of tan2212\tan 22{\dfrac{1}{2}^\circ } but this method is quite difficult in calculation part .

Always do rationalisation when we have to compare the values as here tan(15)=313+1\tan ({15^\circ }) = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} if we didn't rationalise then it quite difficult to compare it with other values.