Question
Question: If \(A = \sin {15^\circ } + \cos {15^\circ },B = \tan {15^\circ } + \cot {15^\circ },C = \tan 22{\df...
If A=sin15∘+cos15∘,B=tan15∘+cot15∘,C=tan2221∘−cot2221∘ then the descending order is
(a) A,B,C
(b) B,A,C
(c) C,B,A
(d) B,C,A
Solution
For finding the value of sin15∘ use sin(a−b)=sinacosb−cosasinb , If we put a=45∘,b=30∘ then we will find the value of sin15∘hence cos15∘=1−sin215∘ . Now for the tan15∘ use trigonometric identity tan(a−b)=1+tanatanbtana−tanb If we put a=45∘,b=30∘ from this get the value of tan15∘and cot15∘. Now for the tan2221∘ we know that from the trigonometric identities tan(2a)=1−tan2a2tana If we put a=2221∘ = 22.5∘ and take tan22.5∘=x. Now solve, we can get the value of x.
Complete step-by-step answer:
As we know from the trigonometry identity ,
sin(a−b)=sinacosb−cosasinb
If we put a=45∘,b=30∘ then
sin(45∘−30∘)=sin45∘cos30∘−cos45∘sin30∘
or we know that sin45∘=21 , cos30∘=23 , cos45∘=21 , sin30∘=21
By putting these values in above equation we get ,
sin(15∘)=21.23−21.21
sin15∘=223−1
Now we know that sin2θ+cos2θ=1 or we can write as cosθ=1−sin2θ
cos15∘=1−sin215∘
cos15∘=1−(223−1)2
As we know that (22)2=8
cos15∘=1−8(3−1)2
cos15∘=88−(3−1)2
As we know that the (3−1)2=3+1−23
cos15∘=88−(3+1−23)
cos15∘=84+23
cos15∘=224+23
A=sin15∘+cos15∘=223−1+224+23
Hence for the tan15∘ we know that from the trigonometric identities
tan(a−b)=1+tanatanbtana−tanb
If we put a=45∘,b=30∘ then
tan(45∘−30∘)=1+tan45∘tan30∘tan45∘−tan30∘
We know that tan45∘=1,tan30∘=31 putting these values in the above equation
tan(15∘)=1+1.311−31
Take LCM
tan(15∘)=33+133−1
Now 3 is common in both numerator and denominator hence it will cancel out , we get
tan(15∘)=3+13−1
Now multiply by 3−1 on both numerator and denominator for rationalisation ,
tan(15∘)=3+13−1×3−13−1
After solving this we get ,
tan(15∘)=2(3−1)2 or tan(15∘)=24−23
or tan15∘=2−3
cot15∘=tan15∘1=2−31
Now multiply by 2+3 in both denominator and numerator for rationalisation
cot15∘=2−31×2+32+3
on further solving we get ,
cot15∘=2+3
B=tan15∘+cot15∘=2−3+2+3=4
Hence for the tan2221∘ we know that from the trigonometric identities
tan(2a)=1−tan2a2tana
If we put a=2221∘ = 22.5∘ then
tan(2×22.5∘)=1−tan222.5∘2tan22.5∘
tan(45∘)=1−tan222.5∘2tan22.5∘
let us take tan22.5∘=x then and we know that tan45∘=1
1=1−x22x
x2+2x−1=0
x=2a−b±b2−4ac=2−2±4+4
As tan22.5∘=x hence tan22.5∘ is in the present in the first quadrant hence positive sign will be considered , negative will be ignored .
tan22.5∘=2−2+8=−1+2
cot22.5∘=tan22.5∘1=−1+21
Now multiple by −1−2 in both denominator and numerator for rationalisation
cot22.5∘=−1+21×−1−2−1−2
on further solving we get ,
cot22.5∘=(−1)2−(2)2−(1+2)=1+2
C=tan2221∘−cot2221∘=−1+2−(1+2)=−2
Hence from above we get
A=223−1+224+23
B=4
C=−2
As C is the negative hence it is smallest .
In A=sin15∘+cos15∘=223−1+224+23 hence the max value of Sin and Cos is 1 it did not be greater than 2 at any cost hence , B is the greatest than A and at last C , C < A < B or In descending order B,A,C.
So, the correct answer is “Option (b)”.
Note: In the finding the value of tan(15∘) we will also the formula tan(2a)=1−tan2a2tana by putting the value of a=15∘ hence solve it as we solve in finding the value of value of tan2221∘ but this method is quite difficult in calculation part .
Always do rationalisation when we have to compare the values as here tan(15∘)=3+13−1 if we didn't rationalise then it quite difficult to compare it with other values.