Solveeit Logo

Question

Question: If a simple harmonic motion is represented by \(\frac{d^{2}x}{\text{d}\text{t}^{2}} + \alpha x = 0\)...

If a simple harmonic motion is represented by d2xdt2+αx=0\frac{d^{2}x}{\text{d}\text{t}^{2}} + \alpha x = 0, its time period is

A

2πα2\pi\sqrt{\alpha}

B

2πα\pi\alpha

C

2πα\frac{2\pi}{\sqrt{\alpha}}

D

2πα\frac{2\pi}{\alpha}

Answer

2πα\frac{2\pi}{\sqrt{\alpha}}

Explanation

Solution

The equation of SHM,

d2xdt2+αx=0\frac{d^{2}x}{dt^{2}} + \alpha x = 0 or d2xdt2=αx\frac{d^{2}x}{dt^{2}} = - \alpha x

Comparing it with the equation of SHM

d2xdt2=ω2x\frac{d^{2}x}{dt^{2}} = - \omega^{2}x

ω2=αorω=α\omega^{2} = \alpha or\omega = \sqrt{\alpha}

T=2πω=2πα\therefore T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\alpha}}