Solveeit Logo

Question

Physics Question on Oscillations

If a simple harmonic motion is represented by d2xdt2+αx=0,\frac{d^{2}x}{dt^{2}}+\alpha\,x=0, its time period is :

A

2πα\frac{2\pi}{\alpha}

B

2πα\frac{2\pi}{\sqrt{\alpha}}

C

2πα2\pi\alpha

D

2πα2\pi\sqrt{\alpha}

Answer

2πα\frac{2\pi}{\sqrt{\alpha}}

Explanation

Solution

d2xdt2=αx...(i)\frac{d^{2}x}{dt^{2}}=-\alpha\,x\,...\left(i\right) We know a=d2xdt2=ω2x...(ii)a=\frac{d^{2}x}{dt^{2}}=-\omega^{2}\,x\,...\left(ii\right) From Eqs. (i)\left(i\right) and (ii)\left(ii\right), we have ω2=α\omega^{2}=\alpha ω=α\omega=\sqrt{\alpha} or 2πT=α\frac{2\pi }{T}=\sqrt{\alpha} T=2πT=α\therefore T=\frac{2\pi }{T}=\sqrt{\alpha}