Question
Question: If (a secθ, b tanθ) and (a secφ, b tanφ) are the ends of a focal chord of \(\frac{x^{2}}{a^{2}} - \f...
If (a secθ, b tanθ) and (a secφ, b tanφ) are the ends of a focal chord of a2x2−b2y2 = 1, then tan 2θ tan 2φ equals to
A
e+1e−1
B
1+e1−e
C
1−e1+e
D
e−1e+1
Answer
1+e1−e
Explanation
Solution
Equation of the chord connecting the points (a sec θ, b tan θ) and (a sec φ, b tan φ) is
axcos(2θ−φ)−bysin(2θ+φ)=cos(2θ+φ)If it passes through (ae, 0), we have, e cos(2θ−φ)= cos (2θ+φ)
⇒ e = cos(2θ−φ)cos(2θ+φ) = 1+tan2θ.tan2φ1−tan2θ.tan2φ
⇒ tan2θ.tan2φ=1+e1−e.