Solveeit Logo

Question

Question: If a right-angled DABC of maximum area is inscribed within a circle of radius R, then-...

If a right-angled DABC of maximum area is inscribed within a circle of radius R, then-

A

D = 2R2

B

1r3\frac { 1 } { r _ { 3 } }=

C

r = (2\sqrt { 2 }– 1) R

D

s = (1 + 2\sqrt { 2 })R

Answer

1r3\frac { 1 } { r _ { 3 } }=

Explanation

Solution

For a right-angled triangle inscribed in a circle of radius

R, the length of the hypotenuse is 2R. \ the area is maximum

when the triangle is isosceles with each side = 2\sqrt { 2 }R.

\ s = 12\frac { 1 } { 2 } (22\sqrt { 2 }+ 2) R = (2\sqrt { 2 }+ 1)R

\ D =12\frac { 1 } { 2 } 2\sqrt { 2 }R. 2\sqrt { 2 }R = R2 ̃ = (2+1)R\frac { ( \sqrt { 2 } + 1 ) } { R }

1r1\frac { 1 } { \mathrm { r } _ { 1 } } + + 1r3\frac { 1 } { r _ { 3 } }= saΔ\frac { \mathrm { s } - \mathrm { a } } { \Delta } + + scΔ\frac { \mathrm { s } - \mathrm { c } } { \Delta } = sΔ\frac { \mathrm { s } } { \Delta } ==