Solveeit Logo

Question

Mathematics Question on Random Experiments

If a random variable XX has the probability distribution given by P(X=0)=3C3,P(X=2)=5C10C2P(X = 0) = 3C^3, P(X = 2 ) = 5C - 10C^2 and P(X=4)=4C1P(X = 4) = 4C - 1, then the variance of that distribution is

A

689\frac{68}{9}

B

229\frac{22}{9}

C

61281\frac{612}{81}

D

12881\frac{128}{81}

Answer

12881\frac{128}{81}

Explanation

Solution

Given,
P(X=0)=3C3P(X=0)=3 C^{3}
P(X=2)=5C10C2P(X=2)=5 C-10 C^{2}
and P(X=4)=4C1P(X=4)=4 C-1
We know that,
P(X)=1\sum P(X)=1
3C3+(5C10C2)+(4C1)=1\Rightarrow 3 C^{3}+\left(5 C-10 C^{2}\right)+(4 C-1)=1
3C310C2+9C2=0\Rightarrow 3 C^{3}-10 C^{2}+9 C-2=0
(C1)(3C27C+2)=0\Rightarrow (C-1)\left(3 C^{2}-7 C+2\right)=0
(C1)(3C1)(C2)=0\Rightarrow (C-1)(3 C-1)(C-2)=0
C=1,13,2\Rightarrow C=1, \frac{1}{3}, 2
C=13\therefore C=\frac{1}{3}
Now,

Hence, variance =ΣXP2(ΣXP)2=\Sigma X_{P}^{2}-\left(\Sigma X_{P}\right)^{2}
=(02×19+4×59+16×13)(109+43)2=\left(0^{2} \times \frac{1}{9}+4 \times \frac{5}{9}+16 \times \frac{1}{3}\right)-\left(\frac{10}{9}+\frac{4}{3}\right)^{2}
=(209+163)(6627)2=\left(\frac{20}{9}+\frac{16}{3}\right)-\left(\frac{66}{27}\right)^{2}
=60+1442748481=\frac{60+144}{27}-\frac{484}{81}
=2042748481=\frac{204}{27}-\frac{484}{81}
=61248481=12881=\frac{612-484}{81}=\frac{128}{81}