Question
Mathematics Question on Random Experiments
If a random variable X has the probability distribution given by P(X=0)=3C3,P(X=2)=5C−10C2 and P(X=4)=4C−1, then the variance of that distribution is
A
968
B
922
C
81612
D
81128
Answer
81128
Explanation
Solution
Given,
P(X=0)=3C3
P(X=2)=5C−10C2
and P(X=4)=4C−1
We know that,
∑P(X)=1
⇒3C3+(5C−10C2)+(4C−1)=1
⇒3C3−10C2+9C−2=0
⇒(C−1)(3C2−7C+2)=0
⇒(C−1)(3C−1)(C−2)=0
⇒C=1,31,2
∴C=31
Now,
Hence, variance =ΣXP2−(ΣXP)2
=(02×91+4×95+16×31)−(910+34)2
=(920+316)−(2766)2
=2760+144−81484
=27204−81484
=81612−484=81128