Solveeit Logo

Question

Question: If a quadrilateral with sides length a, b, c, d can be inscribed in one circle and circum scribed ab...

If a quadrilateral with sides length a, b, c, d can be inscribed in one circle and circum scribed about another circle then radius of later circle is –

A

ac+bd2(a+b+c+d)\frac{ac + bd}{2(a + b + c + d)}

B

a4+b4+c4+d4abcd2(a+b+c+d)\frac{\sqrt{a^{4} + b^{4} + c^{4} + d^{4} - abcd}}{2(a + b + c + d)}

C

2abcda+b+c+d\frac{2\sqrt{abcd}}{a + b + c + d}

D

None of these

Answer

2abcda+b+c+d\frac{2\sqrt{abcd}}{a + b + c + d}

Explanation

Solution

Area of quadrilateral = 12\frac { 1 } { 2 }(ar + rb + rc + rd)

= abcd\sqrt { \mathrm { abcd } }=

⇒ r = 2abcda+b+c+d\frac { 2 \sqrt { a b c d } } { a + b + c + d }

[Q Area = (sa)(sb)(sc)(sd)\sqrt { ( s - a ) ( s - b ) ( s - c ) ( s - d ) } =

In this case

s – a = c

s – b = d

s – c = a

s – d = b