Question
Question: If a polynomial P(x) given by $P(x)=2x^4+ax^3+bx^2+cx+d$ is such that P(1) = 4, P(2) = 7, P(3) = 12 ...
If a polynomial P(x) given by P(x)=2x4+ax3+bx2+cx+d is such that P(1) = 4, P(2) = 7, P(3) = 12 and P(4) = 19, then P(5) =

Answer
76
Explanation
Solution
We are given
P(x)=2x4+ax3+bx2+cx+dwith
P(1)=4,P(2)=7,P(3)=12,P(4)=19.Define
R(x)=P(x)−2x4,so that R(x) is a cubic polynomial. Its values are:
x1234R(x)=P(x)−2x44−2(14)=4−2=27−2(16)=7−32=−2512−2(81)=12−162=−15019−2(256)=19−512=−493Now, calculate the finite differences:
-
1st Differences:
Δ1Δ2Δ3=R(2)−R(1)=−25−2=−27,=R(3)−R(2)=−150−(−25)=−125,=R(4)−R(3)=−493−(−150)=−343. -
2nd Differences:
Δ12Δ22=Δ2−Δ1=−125−(−27)=−98,=Δ3−Δ2=−343−(−125)=−218. -
3rd Difference:
Δ3=Δ22−Δ12=−218−(−98)=−120.(For a cubic polynomial, this third difference is constant.)
Extrapolating to x=5:
- Next 2nd difference: Δ32=Δ22+Δ3=−218+(−120)=−338.
- Next 1st difference: Δ4=Δ3+Δ32=−343+(−338)=−681.
- Value at x=5: R(5)=R(4)+Δ4=−493+(−681)=−1174.
Finally, recover P(5):
P(5)=R(5)+2(54)=−1174+2(625)=−1174+1250=76.