Solveeit Logo

Question

Physics Question on Gravitation

If a planet has twice the mass of earth and three times the radius (R)(R) of earth, then the escape velocity of the planet is (υe\upsilon_e = escape velocity of earth)

A

12υe\sqrt{ \frac{1}{2}} \upsilon_e

B

23υe\sqrt{ \frac{2}{3}} \upsilon_e

C

2υe\sqrt{2} \upsilon_e

D

none of these

Answer

23υe\sqrt{ \frac{2}{3}} \upsilon_e

Explanation

Solution

Escape velocity,υe=2gR\upsilon_e = \sqrt{2gR}
=2GMR2R= \sqrt{\frac{2GM}{R^2}} R (g=GMR2)\left( \because \:\: g = \frac{GM}{R^2} \right)
υeMR\therefore \:\: \upsilon_e \propto \sqrt{\frac{M}{R}} ...(i)
Given, Mp=2MM_p = 2M and Rp=3RR_p = 3R
(υe)p=23υe\therefore \:\:\: (\upsilon_e)_p = \sqrt{\frac{2}{3}} \upsilon_e (Using (i))