Solveeit Logo

Question

Question: If a plane cuts off intercepts <img src="https://cdn.pureessence.tech/canvas_127.png?top_left_x=0&to...

If a plane cuts off intercepts OC=cO C = c from the co-ordinate axes, then the area of the triangle ABCA B C=

A

12b2c2+c2a2+a2b2\frac { 1 } { 2 } \sqrt { b ^ { 2 } c ^ { 2 } + c ^ { 2 } a ^ { 2 } + a ^ { 2 } b ^ { 2 } }

B

12(bc+ca+ab)\frac { 1 } { 2 } ( b c + c a + a b )

C

12abc\frac { 1 } { 2 } a b c

D

12(bc)2+(ca)2+(ab)2\frac { 1 } { 2 } \sqrt { ( b - c ) ^ { 2 } + ( c - a ) ^ { 2 } + ( a - b ) ^ { 2 } }

Answer

12abc\frac { 1 } { 2 } a b c

Explanation

Solution

Length of sides are a2+b2,b2+c2,c2+a2\sqrt { a ^ { 2 } + b ^ { 2 } } , \sqrt { b ^ { 2 } + c ^ { 2 } } , \sqrt { c ^ { 2 } + a ^ { 2 } }

respectively.

Now use Δ=12s(sa)(sb)(sc)\Delta = \frac { 1 } { 2 } \sqrt { s ( s - a ) ( s - b ) ( s - c ) }.

Trick : Put a=2,b=2,c=2a = 2 , b = 2 , c = 2 , then sides will be 22,222 \sqrt { 2 } , 2 \sqrt { 2 } and 222 \sqrt { 2 } i.e., equilateral triangle. So area of this triangle will be Δ=34×(22)2=23\Delta = \frac { \sqrt { 3 } } { 4 } \times ( 2 \sqrt { 2 } ) ^ { 2 } = 2 \sqrt { 3 } sq. units

Now option (1) Δ=1216+16+16=\Rightarrow \Delta = \frac { 1 } { 2 } \sqrt { 16 + 16 + 16 } = 12×43\frac { 1 } { 2 } \times 4 \sqrt { 3 } =23= 2 \sqrt { 3 } . Hence the result.