Solveeit Logo

Question

Question: If a particle travels n equal distances with speeds V1​,V2​,....Vn​, then the average speed V of the...

If a particle travels n equal distances with speeds V1​,V2​,....Vn​, then the average speed V of the particle will be such that
A) V=v1+v2+v3+.......+vnnV = \dfrac{{{v_1} + {v_2} + {v_3} + ....... + {v_n}}}{n}.
B) V=nv1v2+vnv1+v2+v3+.......+vnV = \dfrac{{n{v_1}{v_2} + {v_n}}}{{{v_1} + {v_2} + {v_3} + ....... + {v_n}}}.
C) 1V=1n(1v1+1v2+1v3+........+1vn)\dfrac{1}{V} = \dfrac{1}{n}(\dfrac{1}{{{v_1}}} + \dfrac{1}{{{v_2}}} + \dfrac{1}{{{v_3}}} + ........ + \dfrac{1}{{{v_n}}}).
D ) V=v12+v22+v32+...........vn2V = \sqrt {v_1^2 + v_2^2 + v_3^2 + ...........v_n^2} .

Explanation

Solution

Hint
Use the formula distance = speed ×\timestime. And take out overall time and hence the speed by computing with the formula V=TotaldistancetravelledTotaltimetakenV = \dfrac{{Total\,dis\tan ce\,travelled}}{{Total\,time\,taken}} =nt1+t2+t3+t4+.....+tn = \dfrac{n}{{{t_1} + {t_2} + {t_3} + {t_4} + ..... + {t_n}}}to solve the problem.

Step by step Solution
Divide the problem into 3-4 steps first because equal distances are covered with different velocities and write their time for each duration. Let the common n equal distance have a value of s metres.
t1=sv1{t_1} = \dfrac{s}{{{v_1}}} and similarly ,
t2=sv2\Rightarrow {t_2} = \dfrac{s}{{{v_2}}}
t3=sv3\Rightarrow {t_3} = \dfrac{s}{{{v_3}}}
.
.
.
.
.
.
.
tn=svn{t_n} = \dfrac{s}{{{v_n}}}
Now,
The average speed in the entire journey is given by,
V=TotaldistancetravelledTotaltimetaken v=nt1+t2+t3+t4+.....+tn \begin{gathered} V = \dfrac{{Total\,dis\tan ce\,travelled}}{{Total\,time\,taken}} \\\ v = \dfrac{n}{{{t_1} + {t_2} + {t_3} + {t_4} + ..... + {t_n}}} \\\ \end{gathered}
Putting the values from the above solved part we have,
v=nsv1+sv2+sv3+.......+svnv = \dfrac{n}{{\dfrac{s}{{{v_1}}} + \dfrac{s}{{{v_2}}} + \dfrac{s}{{{v_3}}} + ....... + \dfrac{s}{{{v_n}}}}}
And finally we get ,
v=n1n(sv1+sv2+sv3+.......+svn)v = \dfrac{n}{{\dfrac{1}{n}(\dfrac{s}{{{v_1}}} + \dfrac{s}{{{v_2}}} + \dfrac{s}{{{v_3}}} + ....... + \dfrac{s}{{{v_n}}})}}
Hence the correct option is option C .

Note
There are other kinds of questions where the distance is covered by the first half and second half . Those questions need to be solved by taking d1+d2{d_1} + {d_2}in the similar way like we took time in this case.
Further memorizing these equations helps to solve these kinds of problems faster.