Solveeit Logo

Question

Question: If a particle is thrown with a speed of v at an angle theta with its orbit around the earth while re...

If a particle is thrown with a speed of v at an angle theta with its orbit around the earth while revolving around in a radius R0 R=Radius of Earth, M mass of earth M0 mass of partile , analyse its elliptical motion mathematicall

Answer

The elliptical orbit is described by the equation r(ϕ)=a(1e2)1+ecos(ϕϕ0)r(\phi) = \frac{a(1 - e^2)}{1 + e \cos(\phi - \phi_0)}, where a=GMR02GMR0v2a = \frac{G M R_0}{2 G M - R_0 v^2} is the semi-major axis, e=1+(v22GM/R0)R02v2cos2θ(GM)2e = \sqrt{1 + \frac{(v^2 - 2 G M/R_0) R_0^2 v^2 \cos^2\theta}{(G M)^2}} is the eccentricity, and ϕ0\phi_0 is the angle of periapsis. The initial position is at r=R0r=R_0 and angle ϕ=0\phi=0, with initial radial velocity vr=vsinθv_r = v \sin\theta and tangential velocity vt=vcosθv_t = v \cos\theta. The eccentricity ee must be between 0 and 1 for an ellipse, which requires v2<2GM/R0v^2 < 2GM/R_0.

Explanation

Solution

The motion of a particle under the gravitational force of the Earth is governed by the laws of central forces. The orbit of the particle is a conic section, which is an ellipse in this case. The parameters of the elliptical orbit (semi-major axis aa and eccentricity ee) are determined by the initial conditions: the initial position (radius R0R_0) and the initial velocity (speed vv and angle θ\theta with the local tangent).

Let the initial position be at radius r=R0r = R_0. Let the initial velocity be v\vec{v} with magnitude vv. The angle between the initial velocity vector and the local tangent is θ\theta. The angle between the initial velocity vector and the initial radius vector is α=90θ\alpha = 90^\circ - \theta (assuming θ\theta is measured towards the center) or α=90+θ\alpha = 90^\circ + \theta (assuming θ\theta is measured away from the center). Let's assume the angle between the velocity vector and the radius vector is α\alpha. Then the radial component of velocity is vr=vcosαv_r = v \cos\alpha and the tangential component is vt=vsinαv_t = v \sin\alpha. The problem states the angle is θ\theta with the orbit (tangent). So, the tangential component is vt=vcosθv_t = v \cos\theta and the radial component is vr=vsinθv_r = v \sin\theta (assuming θ\theta is the angle between v\vec{v} and the tangent, and the radial component is positive outward).

The total mechanical energy EE and the angular momentum L\vec{L} are conserved.

Initial total energy E=12M0v2GMM0R0E = \frac{1}{2} M_0 v^2 - \frac{G M M_0}{R_0}.

Initial angular momentum magnitude L=r0×M0v0=R0M0vt=R0M0vcosθL = |\vec{r}_0 \times M_0 \vec{v}_0| = R_0 M_0 v_t = R_0 M_0 v \cos\theta.

For an elliptical orbit, the total energy EE must be negative:

E<0    12M0v2<GMM0R0    v2<2GMR0E < 0 \implies \frac{1}{2} M_0 v^2 < \frac{G M M_0}{R_0} \implies v^2 < \frac{2 G M}{R_0}. This means the initial speed vv must be less than the escape velocity at R0R_0.

The parameters of the ellipse are related to EE and LL:

Semi-major axis a=GMM02E=GMM02(12M0v2GMM0R0)=GM2GMR0v2=GMR02GMR0v2a = -\frac{G M M_0}{2 E} = -\frac{G M M_0}{2 (\frac{1}{2} M_0 v^2 - \frac{G M M_0}{R_0})} = \frac{G M}{\frac{2 G M}{R_0} - v^2} = \frac{G M R_0}{2 G M - R_0 v^2}.

Eccentricity ee is given by L2=GMM02a(1e2)L^2 = G M M_0^2 a (1 - e^2).

(R0M0vcosθ)2=GMM02GMR02GMR0v2(1e2)(R_0 M_0 v \cos\theta)^2 = G M M_0^2 \frac{G M R_0}{2 G M - R_0 v^2} (1 - e^2)

R02v2cos2θ=(GM)2R02GMR0v2(1e2)R_0^2 v^2 \cos^2\theta = \frac{(G M)^2 R_0}{2 G M - R_0 v^2} (1 - e^2)

1e2=R02v2cos2θ(2GMR0v2)(GM)2R0=R0v2cos2θ(2GMR0v2)(GM)21 - e^2 = \frac{R_0^2 v^2 \cos^2\theta (2 G M - R_0 v^2)}{(G M)^2 R_0} = \frac{R_0 v^2 \cos^2\theta (2 G M - R_0 v^2)}{(G M)^2}

e2=1R0v2cos2θ(2GMR0v2)(GM)2e^2 = 1 - \frac{R_0 v^2 \cos^2\theta (2 G M - R_0 v^2)}{(G M)^2}.

Alternatively, e2=1+2EL2(GMM0)2=1+2(12M0v2GMM0R0)(R0M0vcosθ)2(GMM0)2e^2 = 1 + \frac{2 E L^2}{(G M M_0)^2} = 1 + \frac{2 (\frac{1}{2} M_0 v^2 - \frac{G M M_0}{R_0}) (R_0 M_0 v \cos\theta)^2}{(G M M_0)^2}

e2=1+M0(12v2GMR0)2R02M02v2cos2θG2M2M02=1+(v22GMR0)R02v2cos2θG2M2e^2 = 1 + \frac{M_0 (\frac{1}{2} v^2 - \frac{G M}{R_0}) 2 R_0^2 M_0^2 v^2 \cos^2\theta}{G^2 M^2 M_0^2} = 1 + \frac{(v^2 - \frac{2 G M}{R_0}) R_0^2 v^2 \cos^2\theta}{G^2 M^2}

e2=1+v4R02cos2θG2M22GMR0R02v2cos2θG2M2=1+v4R02cos2θG2M22R0v2cos2θGMe^2 = 1 + \frac{v^4 R_0^2 \cos^2\theta}{G^2 M^2} - \frac{2 G M}{R_0} \frac{R_0^2 v^2 \cos^2\theta}{G^2 M^2} = 1 + \frac{v^4 R_0^2 \cos^2\theta}{G^2 M^2} - \frac{2 R_0 v^2 \cos^2\theta}{G M}.

The equation of the elliptical orbit in polar coordinates with the Earth at the origin is:

r(ϕ)=a(1e2)1+ecos(ϕϕ0)r(\phi) = \frac{a(1 - e^2)}{1 + e \cos(\phi - \phi_0)}

where ϕ\phi is the angle from the direction of periapsis (closest approach).

Let's set the initial position at ϕ=0\phi = 0. So r(0)=R0r(0) = R_0.

R0=a(1e2)1+ecos(ϕ0)=a(1e2)1+ecosϕ0R_0 = \frac{a(1 - e^2)}{1 + e \cos(-\phi_0)} = \frac{a(1 - e^2)}{1 + e \cos\phi_0}.

We also need to determine ϕ0\phi_0. The radial velocity at the initial point is vr=vsinθv_r = v \sin\theta.

The radial velocity in polar coordinates is r˙=ddt(a(1e2)1+ecos(ϕϕ0))=a(1e2)1(1+ecos(ϕϕ0))2(esin(ϕϕ0))ϕ˙\dot{r} = \frac{d}{dt} \left( \frac{a(1 - e^2)}{1 + e \cos(\phi - \phi_0)} \right) = a(1 - e^2) \frac{-1}{(1 + e \cos(\phi - \phi_0))^2} (-e \sin(\phi - \phi_0)) \dot{\phi}

r˙=a(1e2)esin(ϕϕ0)(1+ecos(ϕϕ0))2ϕ˙\dot{r} = \frac{a(1 - e^2) e \sin(\phi - \phi_0)}{(1 + e \cos(\phi - \phi_0))^2} \dot{\phi}.

Using r=a(1e2)1+ecos(ϕϕ0)    (1+ecos(ϕϕ0))=a(1e2)rr = \frac{a(1 - e^2)}{1 + e \cos(\phi - \phi_0)} \implies (1 + e \cos(\phi - \phi_0)) = \frac{a(1 - e^2)}{r}.

r˙=r2a(1e2)esin(ϕϕ0)ϕ˙\dot{r} = \frac{r^2}{a(1 - e^2)} e \sin(\phi - \phi_0) \dot{\phi}.

Using conservation of angular momentum, r2ϕ˙=h=L/M0=R0vcosθr^2 \dot{\phi} = h = L/M_0 = R_0 v \cos\theta.

r˙=ha(1e2)esin(ϕϕ0)\dot{r} = \frac{h}{a(1 - e^2)} e \sin(\phi - \phi_0).

At the initial point (ϕ=0,r=R0,r˙0=vsinθ\phi=0, r=R_0, \dot{r}_0 = v \sin\theta):

vsinθ=R0vcosθa(1e2)esin(ϕ0)=R0vcosθa(1e2)esinϕ0v \sin\theta = \frac{R_0 v \cos\theta}{a(1 - e^2)} e \sin(-\phi_0) = -\frac{R_0 v \cos\theta}{a(1 - e^2)} e \sin\phi_0.

vsinθa(1e2)R0vcosθ=esinϕ0\frac{v \sin\theta a(1 - e^2)}{R_0 v \cos\theta} = -e \sin\phi_0

tanθa(1e2)R0=esinϕ0\frac{\tan\theta a(1 - e^2)}{R_0} = -e \sin\phi_0.

From R0=a(1e2)1+ecosϕ0R_0 = \frac{a(1 - e^2)}{1 + e \cos\phi_0}, we have 1+ecosϕ0=a(1e2)R01 + e \cos\phi_0 = \frac{a(1 - e^2)}{R_0}.

ecosϕ0=a(1e2)R01e \cos\phi_0 = \frac{a(1 - e^2)}{R_0} - 1.

We have two equations for ee and ϕ0\phi_0:

ecosϕ0=a(1e2)R01e \cos\phi_0 = \frac{a(1 - e^2)}{R_0} - 1

esinϕ0=a(1e2)R0tanθe \sin\phi_0 = -\frac{a(1 - e^2)}{R_0} \tan\theta

Squaring and adding gives e2=(a(1e2)R01)2+(a(1e2)R0)2tan2θe^2 = (\frac{a(1 - e^2)}{R_0} - 1)^2 + (\frac{a(1 - e^2)}{R_0})^2 \tan^2\theta.

This is consistent with the earlier expression for e2e^2 derived from EE and LL.

The mathematical analysis involves calculating the parameters of the ellipse (a,e,ϕ0a, e, \phi_0) from the initial conditions (R0,v,θR_0, v, \theta) using the conservation of energy and angular momentum. The equation of the orbit in polar coordinates describes the path of the particle. The position and velocity of the particle at any point on the orbit can be derived from the orbit equation.

The semi-major axis a=GMR02GMR0v2a = \frac{G M R_0}{2 G M - R_0 v^2}.

The eccentricity e=1+(v2GM2R0)R02v2cos2θ1e = \sqrt{1 + \left(\frac{v^2}{G M} - \frac{2}{R_0}\right) \frac{R_0^2 v^2 \cos^2\theta}{1}}. (Using e2=1+2Eh2(GM)2e^2 = 1 + \frac{2 E h^2}{(G M)^2} where h=L/M0h = L/M_0)

h=R0vcosθh = R_0 v \cos\theta. E/M0=12v2GMR0E/M_0 = \frac{1}{2} v^2 - \frac{G M}{R_0}.

e2=1+2(12v2GMR0)(R0vcosθ)2(GM)2=1+(v22GMR0)R02v2cos2θ(GM)2e^2 = 1 + \frac{2 (\frac{1}{2} v^2 - \frac{G M}{R_0}) (R_0 v \cos\theta)^2}{(G M)^2} = 1 + \frac{(v^2 - \frac{2 G M}{R_0}) R_0^2 v^2 \cos^2\theta}{(G M)^2}.

The angle of periapsis ϕ0\phi_0 can be found from tanϕ0=esinϕ0ecosϕ0=a(1e2)R0tanθa(1e2)R01=tanθ1R0a(1e2)\tan\phi_0 = \frac{e \sin\phi_0}{e \cos\phi_0} = \frac{-\frac{a(1 - e^2)}{R_0} \tan\theta}{\frac{a(1 - e^2)}{R_0} - 1} = \frac{- \tan\theta}{1 - \frac{R_0}{a(1 - e^2)}}.

We know R0=a(1e2)1+ecosϕ0R_0 = \frac{a(1 - e^2)}{1 + e \cos\phi_0}, so R0a(1e2)=11+ecosϕ0\frac{R_0}{a(1 - e^2)} = \frac{1}{1 + e \cos\phi_0}.

tanϕ0=tanθ111+ecosϕ0=tanθ1+ecosϕ011+ecosϕ0=tanθ(1+ecosϕ0)ecosϕ0\tan\phi_0 = \frac{-\tan\theta}{1 - \frac{1}{1 + e \cos\phi_0}} = \frac{-\tan\theta}{\frac{1 + e \cos\phi_0 - 1}{1 + e \cos\phi_0}} = \frac{-\tan\theta (1 + e \cos\phi_0)}{e \cos\phi_0}.

This doesn't simplify nicely. Let's use the initial velocity components.

Initial radial velocity r˙0=vsinθ\dot{r}_0 = v \sin\theta. Initial tangential velocity vt0=R0ϕ˙0=vcosθv_{t0} = R_0 \dot{\phi}_0 = v \cos\theta.

The equation of the orbit is r(ϕ)r(\phi).

drdϕ=drdtdtdϕ=r˙ϕ˙\frac{dr}{d\phi} = \frac{dr}{dt} \frac{dt}{d\phi} = \frac{\dot{r}}{\dot{\phi}}.

At the initial point ϕ=0\phi=0: (drdϕ)ϕ=0=r˙0ϕ˙0=vsinθvcosθ/R0=R0tanθ(\frac{dr}{d\phi})_{\phi=0} = \frac{\dot{r}_0}{\dot{\phi}_0} = \frac{v \sin\theta}{v \cos\theta / R_0} = R_0 \tan\theta.

From r(ϕ)=C1+ecos(ϕϕ0)r(\phi) = \frac{C}{1 + e \cos(\phi - \phi_0)}, where C=a(1e2)C = a(1 - e^2).

drdϕ=C1(1+ecos(ϕϕ0))2(esin(ϕϕ0))=Cesin(ϕϕ0)(1+ecos(ϕϕ0))2\frac{dr}{d\phi} = C \frac{-1}{(1 + e \cos(\phi - \phi_0))^2} (-e \sin(\phi - \phi_0)) = \frac{C e \sin(\phi - \phi_0)}{(1 + e \cos(\phi - \phi_0))^2}.

At ϕ=0\phi = 0: (drdϕ)ϕ=0=Cesin(ϕ0)(1+ecos(ϕ0))2=Cesinϕ0(1+ecosϕ0)2(\frac{dr}{d\phi})_{\phi=0} = \frac{C e \sin(-\phi_0)}{(1 + e \cos(-\phi_0))^2} = \frac{-C e \sin\phi_0}{(1 + e \cos\phi_0)^2}.

We know R0=C1+ecosϕ0R_0 = \frac{C}{1 + e \cos\phi_0}, so 1+ecosϕ0=C/R01 + e \cos\phi_0 = C/R_0.

(drdϕ)ϕ=0=Cesinϕ0(C/R0)2=Cesinϕ0R02C2=esinϕ0R02C(\frac{dr}{d\phi})_{\phi=0} = \frac{-C e \sin\phi_0}{(C/R_0)^2} = \frac{-C e \sin\phi_0 R_0^2}{C^2} = -\frac{e \sin\phi_0 R_0^2}{C}.

So, R0tanθ=esinϕ0R02a(1e2)R_0 \tan\theta = -\frac{e \sin\phi_0 R_0^2}{a(1 - e^2)}.

tanθ=esinϕ0R0a(1e2)\tan\theta = -\frac{e \sin\phi_0 R_0}{a(1 - e^2)}.

We also have R0=a(1e2)1+ecosϕ0R_0 = \frac{a(1 - e^2)}{1 + e \cos\phi_0}, so R0a(1e2)=11+ecosϕ0\frac{R_0}{a(1 - e^2)} = \frac{1}{1 + e \cos\phi_0}.

tanθ=esinϕ011+ecosϕ0\tan\theta = -e \sin\phi_0 \frac{1}{1 + e \cos\phi_0}.

esinϕ0=tanθ(1+ecosϕ0)e \sin\phi_0 = -\tan\theta (1 + e \cos\phi_0).

This is the same as the previous equation for esinϕ0e \sin\phi_0.

The state of the elliptical orbit is fully described by the parameters aa and ee, and the orientation ϕ0\phi_0. These are calculated from the initial conditions.