Solveeit Logo

Question

Physics Question on Oscillations

If a particle cover the displacement half of amplitude; then what fraction of the total energy of a simple harmonic oscillator is kinetic energy

A

2/72/7

B

3/43/4

C

5/75/7

D

7/37/3

Answer

3/43/4

Explanation

Solution

Kinetic energy, K=12mω2(a2y2)K=\frac{1}{2}m\omega^{2}\left(a^{2}-y^{2}\right) or 12m(a2a24)ω2(y=a2)\frac{1}{2}m\left(a^{2}-\frac{a^{2}}{4}\right)\omega^{2}\quad\left(\because y=\frac{a}{2}\right) =12mω2a2(34)=\frac{1}{2}m\omega^{2}\,a^{2}\left(\frac{3}{4}\right) Total energy, E=12mω2a2E=\frac{1}{2}m\omega^{2}a^{2} KE=12mω2a2(34)12mω2a2\therefore \frac{K}{E}=\frac{\frac{1}{2}m\omega^{2}\,a^{2}\left(\frac{3}{4}\right)}{\frac{1}{2}m\omega^{2}\,a^{2}} KE=34\Rightarrow \frac{K}{E}=\frac{3}{4}