Question
Question: If a ¹ p, b ¹ q, c ¹ r and \(\left| \begin{matrix} p & b & c \\ a & q & c \\ a & b & r \end{matrix} ...
If a ¹ p, b ¹ q, c ¹ r and paabqbccr= 0, then p−ap+ q−bq+ r−cris equal to-
A
0
B
1
C
–1
D
2
Answer
2
Explanation
Solution
Apply R1 – R2, R2 – R3
D = p−a0ab−qq−bb0c−rr= 0
= (p – a) [(q – b) r – b (c – r)] + a (b – q) (c – r) = 0
Dividing by (p – a) (q – b) (c – r), we get
c−rr– q−bb–p−aa= 0 or p−aa+q−bb+r−cr= 0
or p−aa+ 1 +q−bb+ 1 + r−cr= 1 + 1
or p−ap+ q−bq+r−cr= 2.