Solveeit Logo

Question

Question: If a ¹ p, b ¹ q, c ¹ r and \(\left| \begin{matrix} p & b & c \\ a & q & c \\ a & b & r \end{matrix} ...

If a ¹ p, b ¹ q, c ¹ r and pbcaqcabr\left| \begin{matrix} p & b & c \\ a & q & c \\ a & b & r \end{matrix} \right|= 0, then ppa\frac{p}{p - a}+ qqb\frac{q}{q - b}+ rrc\frac{r}{r - c}is equal to-

A

0

B

1

C

–1

D

2

Answer

2

Explanation

Solution

Apply R1 – R2, R2 – R3

D = pabq00qbcrabr\left| \begin{matrix} p - a & b - q & 0 \\ 0 & q - b & c - r \\ a & b & r \end{matrix} \right|= 0

= (p – a) [(q – b) r – b (c – r)] + a (b – q) (c – r) = 0

Dividing by (p – a) (q – b) (c – r), we get

rcr\frac{r}{c - r}bqb\frac{b}{q - b}apa\frac{a}{p - a}= 0 or apa\frac{a}{p - a}+bqb\frac{b}{q - b}+rrc\frac{r}{r - c}= 0

or apa\frac{a}{p - a}+ 1 +bqb\frac{b}{q - b}+ 1 + rrc\frac{r}{r - c}= 1 + 1

or ppa\frac{p}{p - a}+ qqb\frac{q}{q - b}+rrc\frac{r}{r - c}= 2.