Solveeit Logo

Question

Question: If a number n is chosen at random from the set\(\left\\{ {1,2,3.....,1000} \right\\}\). Then, the pr...

If a number n is chosen at random from the set\left\\{ {1,2,3.....,1000} \right\\}. Then, the probability that  n\;n is a number that leaves a remainder 11, when divided by 77, is,
A. 71500\dfrac{{71}}{{500}}
B. 1431000\dfrac{{143}}{{1000}}
C. 72500\dfrac{{72}}{{500}}
D. 711000\dfrac{{71}}{{1000}}

Explanation

Solution

To find the probability we need to find the sample space first. The sample space is nothing but the number of values in whole. The total number of values is called sample space. Then find the value of the number that satisfies the condition. To find the probability we need to divide the numbers that satisfy the condition to the sample space.

Formula:
Sample space be n(s)n(s).
The total values satisfy the equation n(A)n(A).
p(A)=n(A)n(s)p(A) = \dfrac{{n(A)}}{{n(s)}}

Complete step-by-step answer:
Given that the set is from \left\\{ {1,2,3.....,1000} \right\\}.
Let the sample space be set because sample space is the set from which the number is taken and check whether it satisfies the condition.
While counting the values in the set, it is 10001000.
Hence, the total number of sets is 10001000.
As we are considering the set as sample space, the total number of sample spaces is 10001000.
Now, we have to look at the condition.
As per the question given, the condition is the number that leaves a remainder 11, when divided by 77.
Let us consider divided by 77as the first condition and remainder 11as the second condition.
First, consider the condition which is divided by 77,
We will get set as the multiples of seven but it will not satisfy the second condition.
To satisfy the second condition, if we add 11to the multiples of 77, we will get the remainder as 11when it is divided by 77.
First, let us find the multiples of 77which falls below 10001000. They are

7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77,  84, 91, 98, 105, 112, 119, 126, 133, 140,  147, 154, 161, 168, 175, 182, 189, 196,  203, 210, 217, 224, 231, 238, 245, 252,  259, 266, 273, 280, 287, 294, 301, 308,  315, 322, 329, 336, 343, 350, 357, 364,  371, 378, 385, 392, 399, 406, 413, 420,  427, 434, 441, 448, 455, 462, 469, 476,  483, 490, 497, 504, 511, 518, 525, 532,  539, 546, 553, 560, 567, 574, 581, 588,  595, 602, 609, 616, 623, 630, 637, 644,  651, 658, 665, 672, 679, 686, 693, 700,  707, 714, 721, 728, 735, 742, 749, 756,  763, 770, 777, 784, 791, 798, 805, 812,  819, 826, 833, 840, 847, 854, 861, 868,  875, 882, 889, 896, 903, 910, 917, 924,  931, 938, 945, 952, 959, 966, 973, 980,  987, 994  7,{\text{ }}14,{\text{ }}21,{\text{ }}28,{\text{ }}35,{\text{ }}42,{\text{ }}49,{\text{ }}56,{\text{ }}63,{\text{ }}70,{\text{ }}77, \\\ {\text{ }}84,{\text{ }}91,{\text{ }}98,{\text{ }}105,{\text{ }}112,{\text{ }}119,{\text{ }}126,{\text{ }}133,{\text{ }}140, \\\ {\text{ }}147,{\text{ }}154,{\text{ }}161,{\text{ }}168,{\text{ }}175,{\text{ }}182,{\text{ }}189,{\text{ }}196,{\text{ }} \\\ 203,{\text{ }}210,{\text{ }}217,{\text{ }}224,{\text{ }}231,{\text{ }}238,{\text{ }}245,{\text{ }}252, \\\ {\text{ }}259,{\text{ }}266,{\text{ }}273,{\text{ }}280,{\text{ }}287,{\text{ }}294,{\text{ }}301,{\text{ }}308, \\\ {\text{ }}315,{\text{ }}322,{\text{ }}329,{\text{ }}336,{\text{ }}343,{\text{ }}350,{\text{ }}357,{\text{ }}364, \\\ {\text{ }}371,{\text{ }}378,{\text{ }}385,{\text{ }}392,{\text{ }}399,{\text{ }}406,{\text{ }}413,{\text{ }}420, \\\ {\text{ }}427,{\text{ }}434,{\text{ }}441,{\text{ }}448,{\text{ }}455,{\text{ }}462,{\text{ }}469,{\text{ }}476, \\\ {\text{ }}483,{\text{ }}490,{\text{ }}497,{\text{ }}504,{\text{ }}511,{\text{ }}518,{\text{ }}525,{\text{ }}532, \\\ {\text{ }}539,{\text{ }}546,{\text{ }}553,{\text{ }}560,{\text{ }}567,{\text{ }}574,{\text{ }}581,{\text{ }}588, \\\ {\text{ }}595,{\text{ }}602,{\text{ }}609,{\text{ }}616,{\text{ }}623,{\text{ }}630,{\text{ }}637,{\text{ }}644, \\\ {\text{ }}651,{\text{ }}658,{\text{ }}665,{\text{ }}672,{\text{ }}679,{\text{ }}686,{\text{ }}693,{\text{ }}700, \\\ {\text{ }}707,{\text{ }}714,{\text{ }}721,{\text{ }}728,{\text{ }}735,{\text{ }}742,{\text{ }}749,{\text{ }}756, \\\ {\text{ }}763,{\text{ }}770,{\text{ }}777,{\text{ }}784,{\text{ }}791,{\text{ }}798,{\text{ }}805,{\text{ }}812, \\\ {\text{ }}819,{\text{ }}826,{\text{ }}833,{\text{ }}840,{\text{ }}847,{\text{ }}854,{\text{ }}861,{\text{ }}868, \\\ {\text{ }}875,{\text{ }}882,{\text{ }}889,{\text{ }}896,{\text{ }}903,{\text{ }}910,{\text{ }}917,{\text{ }}924, \\\ {\text{ }}931,{\text{ }}938,{\text{ }}945,{\text{ }}952,{\text{ }}959,{\text{ }}966,{\text{ }}973,{\text{ }}980, \\\ {\text{ }}987,{\text{ }}994 \\\

Total there is 143143.
As to satisfy the second condition, if we add 11to the above values, we will get the same number of terms as the last number will be 995995.
So the number of values that satisfy the condition are 143143.
To find probability we know that
Sample space be n(s)n(s).
The total values that satisfy the equation n(A)n(A).
p(A)=n(A)n(s)p(A) = \dfrac{{n(A)}}{{n(s)}}
By substituting n(s)=1000n(s) = 1000and n(A)=143n(A) = 143, we get
p(A)=1431000p(A) = \dfrac{{143}}{{1000}}
The probability will be 1431000\dfrac{{143}}{{1000}}.

Note: Remember to find the sample space first be careful while selecting it because there would be differences. Careful while taking values that satisfy the equation. The formula for the finding probability is the number of values that satisfy the condition to the number of sample spaces.
Divide the probability to the maximum extent to get the correct final answer