Solveeit Logo

Question

Mathematics Question on Straight lines

If a normal chord at a point tt on the parabola y2=4axy^{2}=4 \,a \,x subtends a right angle at the vertex, then tt equals to

A

1

B

2\sqrt{2}

C

2

D

3\sqrt{3}

Answer

2\sqrt{2}

Explanation

Solution

The perpendicular of the normal to the parabola y2=4axy^{2}=4 a x at PP is Suppose, it meets the parabola at QQ. If OO be the vertex of the parabola, then the combined equation of OPO P and OQO Q is a homogeneous equation of second degree. y2=4ax(y+tx2at+at3)y^{2}=4 a x\left(\frac{y+t x}{2 a t+a t^{3}}\right) y2(2at+at3)=4ax(y+tx)\Rightarrow y^{2}\left(2 a t+a t^{3}\right)=4 a x(y+t x) 4atx2+4axy(2at+at3)y2=0\Rightarrow 4 a t x^{2}+4 a x y-\left(2 a t+a t^{3}\right) y^{2}=0 Since, OPO P and OQO Q are at right angles, then Coefficient of x2+x^{2}+ Coefficient of y2=0y^{2}=0 4at2atat3=0\therefore 4 a t-2 a t-a t^{3}=0 t2=2\Rightarrow t^{2}=2 t=2 \Rightarrow t=\sqrt{2}