Solveeit Logo

Question

Question: If \(a \neq 6,b,c\)satisfy \(\left| \begin{matrix} a & 2b & 2c \\ 3 & b & c \\ 4 & a & b \end{matrix...

If a6,b,ca \neq 6,b,csatisfy a2b2c3bc4ab=0,\left| \begin{matrix} a & 2b & 2c \\ 3 & b & c \\ 4 & a & b \end{matrix} \right| = 0, then abc=abc =

A

a+b+ca + b + c

B

0

C

b3b^{3}

D

ab+bcab + bc

Answer

b3b^{3}

Explanation

Solution

a2b2c3bc4ab=0a6003bc4ab=0\left| \begin{array} { c c c } a & 2 b & 2 c \\ 3 & b & c \\ 4 & a & b \end{array} \right| = 0 \Rightarrow \left| \begin{array} { c c c } a - 6 & 0 & 0 \\ 3 & b & c \\ 4 & a & b \end{array} \right| = 0 A3=IA^{3} = I

(a6)(b2ac)=0b2ac=0(a - 6)(b^{2} - ac) = 0 \Rightarrow b^{2} - ac = 0, =3[1+3i213i2]=33i= 3\left\lbrack \frac{- 1 + \sqrt{3}i}{2} - \frac{- 1 - \sqrt{3}i}{2} \right\rbrack = 3\sqrt{3}i

\therefore ac=b2abc=b3.ac = b^{2} \Rightarrow abc = b^{3}.