Solveeit Logo

Question

Question: If \(a\ne \left( 2n+1 \right)\dfrac{\pi }{2}\), \(n\in z\), then show that the function \(h\left( x ...

If a(2n+1)π2a\ne \left( 2n+1 \right)\dfrac{\pi }{2}, nzn\in z, then show that the function h(x)=secxh\left( x \right)=\sec x is differentiable at aa and h(a)=secatanah'\left( a \right)=\sec a\tan a. In general, h(x)=secxtanxh'\left( x \right)=\sec x\tan x for all x(2n+1)π2x\ne \left( 2n+1 \right)\dfrac{\pi }{2},nZn\in Z.

Explanation

Solution

Hint: Use the fundamental definition for proving any function to be differentiable or not which is given as
If any function f(x)f\left( x \right) is differentiable at point ‘c’ then LHD and RHD should be equal which are given by relation.

Complete step-by-step answer:
LHD=limxcf(x)f(c)xc=\underset{x\to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c} and RHD=limxc+f(x)f(c)xc=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}

As we know that any functionf(x)f\left( x \right) is differentiable at any point c , if its Left Hand derivative(LHD) and Right Hand Derivative(RHD) are equal to each other and equal to f(c)f'\left( c \right) as well.
LHD and RHD of any function f(x)f\left( x \right) at point ‘c’ can be given as
LHD=limxcf(x)f(c)xc=\underset{x\to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c} …………………………………………………..(i)
RHD=limxc+f(x)f(c)xc=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c} ………………………………………………….(ii)
Hence, any function f(x)f\left( x \right) is differentiable at point c if
LHD = RHD=f(c)f'\left( c \right) ………………………………………………………….. (iii)
Now coming to the question, function h(x)h\left( x \right) is given as secx\sec x where h(x)=secxtanxh'\left( x \right)=\sec x\tan x for all x(2n+1)π2,nzx\ne \left( 2n+1 \right)\dfrac{\pi }{2},n\in z.
And we need to determine whether the given function is differentiable at x=ax=a if a(2n+1)π2,nza\ne \left( 2n+1 \right)\dfrac{\pi }{2},n\in z and h(a)=secatanah'\left( a \right)=\sec a\cdot \tan a h(a)=secatanah'\left( a \right)=\sec a\cdot \tan a.
So, from equation (i) LHD can be given as
LHD=limxah(x)h(a)xa=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{h\left( x \right)-h\left( a \right)}{x-a}
As, h(x)=secxh\left( x \right)=\sec x and hence h(a)=secah\left( a \right)=\sec a. So, LHD can be written as
LHD=limxasecxsecaxa=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{\sec x-\sec a}{x-a}
Now, we can replace ‘a’ by ‘a-h’ where h0h\to 0. Hence, above equations can be written in ‘h’ as
LHD=limh0sec(ah)secaaha=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a-h \right)-\sec a}{a-h-a}
or
limh0sec(ah)secah\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a-h \right)-\sec a}{-h}
Now, we know that secx=1cosx\sec x=\dfrac{1}{\cos x} ; Hence, we get,
LHD=limh0(1cos(ah)1cosa)(1h)=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{1}{\cos \left( a-h \right)}-\dfrac{1}{\cos a} \right)\left( \dfrac{-1}{h} \right)
LHD=limh01h[cosacos(ah)cos(ah)cosa]=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{\cos a-\cos \left( a-h \right)}{\cos \left( a-h \right)\cos a} \right]
Now, we can apply trigonometry identity of cosCcosD\cos C-\cos D which is given as :-
cosCcosD=2sin(CD2)sin(C+D2)\cos C-\cos D=-2\sin \left( \dfrac{C-D}{2} \right)\sin \left( \dfrac{C+D}{2} \right)
Hence, LHD can be written as
LHD=limh01h[2sinaa+h2sina+ah2cos(ah)cosa]=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{-2\sin \dfrac{a-a+h}{2}\sin \dfrac{a+a-h}{2}}{\cos \left( a-h \right)\cos a} \right]
LHD=limh01h[2sinh2sin2ah2cos(ah)cosa]=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{-2\sin \dfrac{h}{2}\sin \dfrac{2a-h}{2}}{\cos \left( a-h \right)\cos a} \right]
or
LHD=limh0(sinh2)(h2)×sin(2ah2)cos(ah)cosa=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \sin \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\times \sin \dfrac{\left( \dfrac{2a-h}{2} \right)}{\cos \left( a-h \right)\cos a}
Now, we can relation of limx0sinxx=1\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 , hence we get
LHD=limh0(1)sin(2ah2)cos(ah)cosa=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( 1 \right)\sin \left( \dfrac{2a-h}{2} \right)}{\cos \left( a-h \right)\cos a}
On applying limits, we get
LHD=sinacosacosa=\dfrac{\sin a}{\cos a\cos a}
Now, we know that tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } and secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta }. Hence, LHD can be given as
LHD=secatana=\sec a\tan a ……………………………………………………………….. (iv)
Now, we can calculate RHD by equation (ii), we get
RHD=limxa+h(x)h(a)xa=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{h\left( x \right)-h\left( a \right)}{x-a}
Now, we have h(x)=secxh\left( x \right)=\sec x, hence, we have h(a)=secah\left( a \right)=\sec a. So, RHD can be written as
RHD=limxa+secxsecaxa=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{\sec x-\sec a}{x-a}
Now, replace a+{{a}^{+}} by (a+h)\left( a+h \right) where h0h\to 0.
Hence, we get
RHD=limh0sec(a+h)secaa+ha=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a+h \right)-\sec a}{a+h-a}
RHD=limh0sec(a+h)secah=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a+h \right)-\sec a}{h}
Now, use secx=1cosx\sec x=\dfrac{1}{\cos x}, we get
RHD=limh01cos(a+h)1cosah=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{\cos \left( a+h \right)}-\dfrac{1}{\cos a}}{h}
RHD=limh01h[cosacos(a+h)cos(a+h)cosa]=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{\cos a-\cos \left( a+h \right)}{\cos \left( a+h \right)\cos a} \right]
Now, use trigonometric identity of cosCcosD\cos C-\cos D which is given as
cosCcosD=2sinCD2sinC+D2\cos C-\cos D=-2\sin \dfrac{C-D}{2}\sin \dfrac{C+D}{2}
Hence, RHD can be given as
RHD=limh01h[2sin(aah2)sin(a+a+h2)cos(a+h)cosa]=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{-2\sin \left( \dfrac{a-a-h}{2} \right)\sin \left( \dfrac{a+a+h}{2} \right)}{\cos \left( a+h \right)\cos a} \right]
or
RHD=limh01h[2sin(h2)sin(2a+h2)cos(a+h)cosa]=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{-2\sin \left( \dfrac{-h}{2} \right)\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a} \right]

We know sin(x)=sinx\sin \left( -x \right)=-\sin x, hence above relation can be given as
RHD=limh02hsin(h2)sin(2a+h2)cos(a+h)cosa\underset{h\to 0}{\mathop{=\lim }}\,\dfrac{2}{h}\sin \left( \dfrac{h}{2} \right)\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}
or
limh0sin(h2)(h2)sin(2a+h2)cos(a+h)cosa\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}
Now, we can use the relation limx0sinxx=1\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 to simplify the above equation. Hence, we get
RHD=limh0(1)sin(2a+h2)cos(a+h)cosa=\underset{h\to 0}{\mathop{\lim }}\,\left( 1 \right)\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}
On putting limits to the above equation, we get
RHD=sinacosacosa=secatana=\dfrac{\sin a}{\cos a\cos a}=\sec a\tan a
Hence,
RHD=secatana=\sec a\tan a ………………………………………………………………… (v)
Now, we can observe that LHD, RHD at point ‘a’ and value of derivative of h(x)h\left( x \right) at point a, all are equal to secatana\sec a\tan a. Hence, from equation (iii), we get to know that h(x)=secxh\left( x \right)=\sec x is differentiable at x=ax=a where a(2n+1)π2a\ne \left( 2n+1 \right)\dfrac{\pi }{2}.

NOTE: Don’t confuse with the statement x(2n+1)π2x\ne \left( 2n+1 \right)\dfrac{\pi }{2} or a is not an odd multiple ofπ2\dfrac{\pi }{2} . These are given because we can not put x=(2n+1)π2x=\left( 2n+1 \right)\dfrac{\pi }{2} to function secx\sec x as it will give positive infinite or negative for (2n+1)π2\left( 2n+1 \right){{\dfrac{\pi }{2}}^{-}} or (2n+1)π2+\left( 2n+1 \right){{\dfrac{\pi }{2}}^{+}}.
That’s why these statements are used in question.
We can use the L'Hospital Rule while calculating LHD and RHD values as both are of the form 00\dfrac{0}{0}. So, we don’t need to use any trigonometric identity for solving LHD and RHD if we use L’Hospital Rule.