Solveeit Logo

Question

Question: If \({a_n} = 3 - 4n,\)then show that \({a_1},{a_2},{a_3}.......\) form an A.P. Also find \({S_{20}}\...

If an=34n,{a_n} = 3 - 4n,then show that a1,a2,a3.......{a_1},{a_2},{a_3}....... form an A.P. Also find S20{S_{20}}.

Explanation

Solution

We will find the common difference of the series by taking any two consecutive terms let us say rth{{\text{r}}^{{\text{th}}}} and (r1)th{(r - 1)^{th}} terms i.e., we’ll find the value of arar1{a_r} - {a_{r - 1}}, if it comes out to be constant the given series will form an A.P. as an A.P. have a constant common difference throughout the series.
To find the sum of the first 20 terms of the series we’ll use the formula of the sum of first n terms of an A.P.

Complete step by step solution:
Given data: an=34n,{a_n} = 3 - 4n,
Let a random term and its preceding term to find the common difference of the series
Let's take rth{{\text{r}}^{{\text{th}}}} and (r1)th{(r - 1)^{th}} terms
ar = 3 - 4r ar - 1 = 3 - 4(r - 1) ar - 1 = 3 - 4r + 4 ar - 1 = 7 - 4r  {{\text{a}}_{\text{r}}}{\text{ = 3 - 4r}} \\\ \Rightarrow {{\text{a}}_{{\text{r - 1}}}}{\text{ = 3 - 4(r - 1)}} \\\ \Rightarrow {{\text{a}}_{{\text{r - 1}}}}{\text{ = 3 - 4r + 4}} \\\ \Rightarrow {{\text{a}}_{{\text{r - 1}}}}{\text{ = 7 - 4r}} \\\
Now common difference say d,

d = ar - ar - 1 d = 3 - 4r - (7 - 4r) d = 3 - 4r - 7 + 4r d = - 4  {\text{d = }}{{\text{a}}_{\text{r}}}{\text{ - }}{{\text{a}}_{{\text{r - 1}}}} \\\ \Rightarrow {\text{d = 3 - 4r - (7 - 4r)}} \\\ \Rightarrow {\text{d = 3 - 4r - 7 + 4r}} \\\ \Rightarrow {\text{d = - 4}} \\\

Putting the values of ar{a_r} and ar1{a_{r - 1}}
Since the common difference(d) is constant, it can be said that a1,a2,a3.......{a_1},{a_2},{a_3}....... will form an A.P.
Using an=34n,{a_n} = 3 - 4n,
Putting n=1n = 1,
a1 = 3 - 4(1) a1 = - 1  {{\text{a}}_{\text{1}}}{\text{ = 3 - 4(1)}} \\\ \therefore {{\text{a}}_{\text{1}}}{\text{ = - 1}} \\\
Putting n=2n = 2,
a2 = 3 - 4(2) a2 = - 5  {{\text{a}}_{\text{2}}}{\text{ = 3 - 4(2)}} \\\ \therefore {{\text{a}}_{\text{2}}}{\text{ = - 5}} \\\
Putting n=3n = 3,
a3=34(3) a3=9  {a_3} = 3 - 4(3) \\\ \therefore {a_3} = - 9 \\\
Therefore, the A.P. will be -1,-5,-9……….
Now, Sum of first n terms of an A.P. i.e. Sn{S_n}is given by,
Sn=n2[2a+(n1)d]{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]
Using this formula, we get,
S20=202[2a1+(201)(4)]{S_{20}} = \dfrac{{20}}{2}\left[ {2{a_1} + \left( {20 - 1} \right)( - 4)} \right]
Using an=34n,{a_n} = 3 - 4n,we get,
=10[2(34(1))+19(4)] =10[2(34)76] =10[2(1)76] =10[276] =10[78] =780  = 10\left[ {2(3 - 4(1)) + 19( - 4)} \right] \\\ = 10\left[ {2(3 - 4) - 76} \right] \\\ = 10\left[ {2( - 1) - 76} \right] \\\ = 10\left[ { - 2 - 76} \right] \\\ = 10\left[ { - 78} \right] \\\ = - 780 \\\
Therefore,
S20=780{S_{20}} = - 780

Hence, the AP is -1,-5,-9,…….. and S20=780{S_{20}} = - 780

Note: We can also find the value of S20{S_{20}} using the alternative formula for the sum of first n terms of an A.P. can also be written as
Sn=n2[a+an]{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]
Using an=34n,{a_n} = 3 - 4n,we get

S20=202[a1+a20] =202[34(1)+34(20)] =10[34+380] =10[684] =10[78] =780  {S_{20}} = \dfrac{{20}}{2}\left[ {{a_1} + {a_{20}}} \right] \\\ = \dfrac{{20}}{2}\left[ {3 - 4(1) + 3 - 4(20)} \right] \\\ = 10\left[ {3 - 4 + 3 - 80} \right] \\\ = 10\left[ {6 - 84} \right] \\\ = 10\left[ { - 78} \right] \\\ = - 780 \\\