Solveeit Logo

Question

Question: If a = min {x<sup>2</sup> + 4x + 5, x ∈ R} and b = \(( - \infty,1\rbrack \cup \lbrack 5,\infty)\) t...

If a = min {x2 + 4x + 5, x ∈ R} and

b = (,1][5,)( - \infty,1\rbrack \cup \lbrack 5,\infty) then the value of [0,)\lbrack 0,\infty) is-

A

y(x)y(x)

B

2n + 1 – 1

C

2x+2y=22^{x} + 2^{y} = 2

D

None of these

Answer

2n + 1 – 1

Explanation

Solution

a = min{x2 + 4x + 5} = 4.1.5424×1\frac { 4.1 .5 - 4 ^ { 2 } } { 4 \times 1 } = 1

b = limθ01cos2θθ2\lim _ { \theta \rightarrow 0 } \frac { 1 - \cos 2 \theta } { \theta ^ { 2 } } = 2

= r=0n1.2nr\sum _ { \mathrm { r } = 0 } ^ { \mathrm { n } } 1.2 ^ { \mathrm { n } - \mathrm { r } }

= 2n(1 + 2–1 + 2–2 + .... + 2–n)

= 2n (1[1(1/2)n+1]1(1/2))\left( 1 \frac { \left[ 1 - ( 1 / 2 ) ^ { n + 1 } \right] } { 1 - ( 1 / 2 ) } \right) = 2n+1 – 1