Question
Question: If $a = \max\{(x + 2)^2 + (y - 3)^2\}$ and $b = \min\{(x+2)^2 +(y-3)^2\}$ where $x, y$ satisfying $x...
If a=max{(x+2)2+(y−3)2} and b=min{(x+2)2+(y−3)2} where x,y satisfying x2+y2+8x–10y–40=0, then :

a+b=18
a+b=178
a−b=42
a−b=722
b, d
Solution
The problem asks us to find the maximum and minimum values of the expression (x+2)2+(y−3)2 subject to the constraint x2+y2+8x–10y–40=0. Let P=(x+2)2+(y−3)2.
-
Analyze the Constraint Equation: The constraint x2+y2+8x–10y–40=0 represents a circle. To find its center and radius, we complete the square: (x2+8x)+(y2−10y)=40 (x2+8x+16)+(y2−10y+25)=40+16+25 (x+4)2+(y−5)2=81 This is the equation of a circle with center C1=(−4,5) and radius R1=81=9.
-
Interpret the Expression to be Optimized: The expression P=(x+2)2+(y−3)2 represents the square of the distance between a point (x,y) on the circle and a fixed point C2=(−2,3). Let D be the distance between (x,y) and C2. Then P=D2. We need to find the maximum and minimum values of D2.
-
Calculate the Distance Between the Centers: First, find the distance d between the center of the circle C1=(−4,5) and the fixed point C2=(−2,3): d=(−2−(−4))2+(3−5)2 d=(2)2+(−2)2 d=4+4 d=8=22.
-
Determine Maximum and Minimum Distances: Compare the distance d with the radius R1: d=22≈2×1.414=2.828 R1=9 Since d<R1, the point C2 lies inside the circle.
For a point inside a circle, the minimum distance from the point to any point on the circle is R1−d. The maximum distance from the point to any point on the circle is R1+d.
So, the minimum distance Dmin=R1−d=9−22. The maximum distance Dmax=R1+d=9+22.
-
Calculate a and b: a=max{(x+2)2+(y−3)2}=(Dmax)2 a=(9+22)2=92+(22)2+2⋅9⋅22 a=81+(4⋅2)+362 a=81+8+362 a=89+362.
b=min{(x+2)2+(y−3)2}=(Dmin)2 b=(9−22)2=92+(22)2−2⋅9⋅22 b=81+8−362 b=89−362.
-
Check the Options: (a) a+b=18 a+b=(89+362)+(89−362)=89+89=178. So, (a) is incorrect.
(b) a+b=178 This matches our calculation. So, (b) is correct.
(c) a−b=42 a−b=(89+362)−(89−362)=89+362−89+362=722. So, (c) is incorrect.
(d) a−b=722 This matches our calculation. So, (d) is correct.
Both options (b) and (d) are correct.