Solveeit Logo

Question

Question: If $a = \max\{(x + 2)^2 + (y - 3)^2\}$ and $b = \min\{(x+2)^2 +(y-3)^2\}$ where $x, y$ satisfying $x...

If a=max{(x+2)2+(y3)2}a = \max\{(x + 2)^2 + (y - 3)^2\} and b=min{(x+2)2+(y3)2}b = \min\{(x+2)^2 +(y-3)^2\} where x,yx, y satisfying x2+y2+8x10y40=0x^2 + y^2 + 8x – 10y – 40 = 0, then :

A

a+b=18a + b = 18

B

a+b=178a+b=178

C

ab=42a-b = 4\sqrt{2}

D

ab=722a-b=72\sqrt{2}

Answer

b, d

Explanation

Solution

The problem asks us to find the maximum and minimum values of the expression (x+2)2+(y3)2(x + 2)^2 + (y - 3)^2 subject to the constraint x2+y2+8x10y40=0x^2 + y^2 + 8x – 10y – 40 = 0. Let P=(x+2)2+(y3)2P = (x + 2)^2 + (y - 3)^2.

  1. Analyze the Constraint Equation: The constraint x2+y2+8x10y40=0x^2 + y^2 + 8x – 10y – 40 = 0 represents a circle. To find its center and radius, we complete the square: (x2+8x)+(y210y)=40(x^2 + 8x) + (y^2 - 10y) = 40 (x2+8x+16)+(y210y+25)=40+16+25(x^2 + 8x + 16) + (y^2 - 10y + 25) = 40 + 16 + 25 (x+4)2+(y5)2=81(x + 4)^2 + (y - 5)^2 = 81 This is the equation of a circle with center C1=(4,5)C_1 = (-4, 5) and radius R1=81=9R_1 = \sqrt{81} = 9.

  2. Interpret the Expression to be Optimized: The expression P=(x+2)2+(y3)2P = (x + 2)^2 + (y - 3)^2 represents the square of the distance between a point (x,y)(x, y) on the circle and a fixed point C2=(2,3)C_2 = (-2, 3). Let DD be the distance between (x,y)(x, y) and C2C_2. Then P=D2P = D^2. We need to find the maximum and minimum values of D2D^2.

  3. Calculate the Distance Between the Centers: First, find the distance dd between the center of the circle C1=(4,5)C_1 = (-4, 5) and the fixed point C2=(2,3)C_2 = (-2, 3): d=(2(4))2+(35)2d = \sqrt{(-2 - (-4))^2 + (3 - 5)^2} d=(2)2+(2)2d = \sqrt{(2)^2 + (-2)^2} d=4+4d = \sqrt{4 + 4} d=8=22d = \sqrt{8} = 2\sqrt{2}.

  4. Determine Maximum and Minimum Distances: Compare the distance dd with the radius R1R_1: d=222×1.414=2.828d = 2\sqrt{2} \approx 2 \times 1.414 = 2.828 R1=9R_1 = 9 Since d<R1d < R_1, the point C2C_2 lies inside the circle.

    For a point inside a circle, the minimum distance from the point to any point on the circle is R1dR_1 - d. The maximum distance from the point to any point on the circle is R1+dR_1 + d.

    So, the minimum distance Dmin=R1d=922D_{min} = R_1 - d = 9 - 2\sqrt{2}. The maximum distance Dmax=R1+d=9+22D_{max} = R_1 + d = 9 + 2\sqrt{2}.

  5. Calculate aa and bb: a=max{(x+2)2+(y3)2}=(Dmax)2a = \max\{(x + 2)^2 + (y - 3)^2\} = (D_{max})^2 a=(9+22)2=92+(22)2+2922a = (9 + 2\sqrt{2})^2 = 9^2 + (2\sqrt{2})^2 + 2 \cdot 9 \cdot 2\sqrt{2} a=81+(42)+362a = 81 + (4 \cdot 2) + 36\sqrt{2} a=81+8+362a = 81 + 8 + 36\sqrt{2} a=89+362a = 89 + 36\sqrt{2}.

    b=min{(x+2)2+(y3)2}=(Dmin)2b = \min\{(x + 2)^2 + (y - 3)^2\} = (D_{min})^2 b=(922)2=92+(22)22922b = (9 - 2\sqrt{2})^2 = 9^2 + (2\sqrt{2})^2 - 2 \cdot 9 \cdot 2\sqrt{2} b=81+8362b = 81 + 8 - 36\sqrt{2} b=89362b = 89 - 36\sqrt{2}.

  6. Check the Options: (a) a+b=18a + b = 18 a+b=(89+362)+(89362)=89+89=178a + b = (89 + 36\sqrt{2}) + (89 - 36\sqrt{2}) = 89 + 89 = 178. So, (a) is incorrect.

    (b) a+b=178a + b = 178 This matches our calculation. So, (b) is correct.

    (c) ab=42a - b = 4\sqrt{2} ab=(89+362)(89362)=89+36289+362=722a - b = (89 + 36\sqrt{2}) - (89 - 36\sqrt{2}) = 89 + 36\sqrt{2} - 89 + 36\sqrt{2} = 72\sqrt{2}. So, (c) is incorrect.

    (d) ab=722a - b = 72\sqrt{2} This matches our calculation. So, (d) is correct.

Both options (b) and (d) are correct.