Solveeit Logo

Question

Question: If a matrix is given as \(2A=\left( \begin{matrix} 2 & 1 \\\ 3 & 2 \\\ \end{matrix} \rig...

If a matrix is given as 2A=(21 32 )2A=\left( \begin{matrix} 2 & 1 \\\ 3 & 2 \\\ \end{matrix} \right) , then what is A1{{A}^{-1}} equal to?
(a). (21 32 )\left( \begin{matrix} 2 & -1 \\\ -3 & 2 \\\ \end{matrix} \right)
(b). 12(21 32 )\dfrac{1}{2}\left( \begin{matrix} 2 & -1 \\\ -3 & 2 \\\ \end{matrix} \right)
(c). 14(21 32 )\dfrac{1}{4}\left( \begin{matrix} 2 & -1 \\\ -3 & 2 \\\ \end{matrix} \right)
(d). None of the above

Explanation

Solution

Hint: The inverse of a matrix A is the matrix which when multiplied with A gives the identity matrix I, which is given as I=(10 01 )I=\left( \begin{matrix} 1 & 0 \\\ 0 & 1 \\\ \end{matrix} \right) , i.e., If A . B = I  B = A1A\ .\ B\ =\ I\ \Rightarrow \ B\ =\ {{A}^{-1}} .
It is somewhat analogous to the multiplicative inverse of a number. Calculation of A is particularly important in solving simultaneous linear equations of several variables. To find A1{{A}^{-1}} , we require a determinant of A and adjoint of A.

Complete step-by-step solution -
The inverse of the matrix AAcan be calculated as follows:
A1=adj(A)A{{A}^{-1}}=\dfrac{adj(A)}{|A|}
Where adj(A)adj(A) is adjoint of the matrix AA given by the transpose of the matrix of the cofactors of the elements of AA given by CCsuch that the matrix element at ith row and jth column, Cij{{C}_{ij}}is the cofactor of the matrix element of AAgiven by Aij{{A}_{ij}} .
If 2A=(21 32 )2A=\left( \begin{matrix} 2 & 1 \\\ 3 & 2 \\\ \end{matrix} \right) then A=(112 321 )A=\left( \begin{matrix} 1 & \dfrac{1}{2} \\\ \dfrac{3}{2} & 1 \\\ \end{matrix} \right)
Since, Cij{{C}_{ij}}is the co-factor of Aij{{A}_{ij}} , we can write
C11=(1)2A11=1{{C}_{11}}={{\left( -1 \right)}^{2}}{{A}_{11}}=1
C12=(1)3A12=32{{C}_{12}}={{\left( -1 \right)}^{3}}{{A}_{12}}=\dfrac{-3}{2}
C21=(1)3A21=12{{C}_{21}}={{\left( -1 \right)}^{3}}{{A}_{21}}=\dfrac{-1}{2}
C22=(1)4A22=1{{C}_{22}}={{\left( -1 \right)}^{4}}{{A}_{22}}=1
Therefore, C=(132 121 )C=\left( \begin{matrix} 1 & -\dfrac{3}{2} \\\ -\dfrac{1}{2} & 1 \\\ \end{matrix} \right)
adj(A)=CT=(112 321 )adj(A)={{C}^{T}}=\left( \begin{matrix} 1 & -\dfrac{1}{2} \\\ -\dfrac{3}{2} & 1 \\\ \end{matrix} \right)
Now, we calculate determinant of AA

A=112 321 =14\left| A \right|=\left| \begin{matrix} 1 & \dfrac{1}{2} \\\ \dfrac{3}{2} & 1 \\\ \end{matrix} \right|=\dfrac{1}{4}
Thus, A1= 4.(112 321 )=4.12.(21 32 )=2(21 31 ){{A}^{-1}}=\ 4.\left( \begin{matrix} 1 & -\dfrac{1}{2} \\\ -\dfrac{3}{2} & 1 \\\ \end{matrix} \right)=4.\dfrac{1}{2}.\left( \begin{matrix} 2 & -1 \\\ -3 & 2 \\\ \end{matrix} \right)=2\left( \begin{matrix} 2 & -1 \\\ -3 & 1 \\\ \end{matrix} \right)
Hence, the correct answer is (d).

Note: To avoid any mistake it is advisable to multiply the constant term outside the matrix AAwith the matrix. Alternatively, one should remember as a rule that if
X=k . YX=k\ .\ Y
where X and Y are matrices and k is a constant, then
X = kn Y|X|\ =\ {{k}^{n}}\ |Y| where n is the order of the matrix.
Another source of mistake is the calculation of adjoint matrix AA. Sometimes, when we are not careful we tend to forget the step where we have to take the transpose of the matrix and use CCinstead as an adjoint. It is a very common source of error.