Solveeit Logo

Question

Question: If \(a = \log_{24}12,b = \log_{36}24\)and \(c = \log_{48}36,\) then 1+abc is equal to...

If a=log2412,b=log3624a = \log_{24}12,b = \log_{36}24and c=log4836,c = \log_{48}36, then 1+abc is equal to

A

2ab2ab

B

2ac2ac

C

2bc2bc

D

0

Answer

2bc2bc

Explanation

Solution

a=log2412=log12log24=2log2+log33log2+log3a = \log_{24}12 = \frac{\log 12}{\log 24} = \frac{2\log 2 + \log 3}{3\log 2 + \log 3}

b=log3624=3log2+log32(log2+log3)b = \log_{36}24 = \frac{3\log 2 + \log 3}{2(\log 2 + \log 3)}

c=log4836=2(log2+log3)4log2+log3c = \log_{48}36 = \frac{2(\log 2 + \log 3)}{4\log 2 + \log 3}

abc=2log2+log34log2+log3\therefore abc = \frac{2\log 2 + \log 3}{4\log 2 + \log 3}

1+abc=6log2+2log34log2+log3=2.3log2+log34log2+log3=2bc1 + abc = \frac{6\log 2 + 2\log 3}{4\log 2 + \log 3} = 2.\frac{3\log 2 + \log 3}{4\log 2 + \log 3} = 2bc.