Solveeit Logo

Question

Question: If \[a = \log {}_23,\] \[b = \log {}_25\] and \[c = \log {}_72\], then \[\log {}_{140}63\] in terms ...

If a=log23,a = \log {}_23, b=log25b = \log {}_25 and c=log72c = \log {}_72, then log14063\log {}_{140}63 in terms of a ,b ,c is
a) 2a+12a+abc+1\dfrac{{2a + 1}}{{2a + abc + 1}}
b) 2ac+12a+c+a\dfrac{{2ac + 1}}{{2a + c + a}}
c) 2ac+12c+ab+a\dfrac{{2ac + 1}}{{2c + ab + a}}
d) None of these

Explanation

Solution

Use logarithmic rules to solve this problem.
1.logba=logalogb\log {}_ba = \dfrac{{\log a}}{{\log b}}
2.log(a×b)=loga+logb\log (a \times b) = \log a + \log b
3.logax=xloga\log {a^x} = x\log a

Complete step-by-step answer:
Given that, a=log23,a = \log {}_23, b=log25b = \log {}_25 and c=log72c = \log {}_72
We will use the first rule from the hint. Then
a=log3log2a = \dfrac{{\log 3}}{{\log 2}}, b=log5log2b = \dfrac{{\log 5}}{{\log 2}} and c=log2log7c = \dfrac{{\log 2}}{{\log 7}} .
Now, moving towards the value we have to find
log14063\log {}_{140}63
=log63log140\dfrac{{\log 63}}{{\log 140}} Using logba=logalogb\log {}_ba = \dfrac{{\log a}}{{\log b}}
=log(9×7)log(2×70)\dfrac{{\log (9 \times 7)}}{{\log (2 \times 70)}} here factors should be used according to data given.
= log9+log7log2+log70\dfrac{{\log 9 + \log 7}}{{\log 2 + \log 70}} using log(a×b)=loga+logb\log (a \times b) = \log a + \log b
=log9+log7log2+log(2×5×7)\dfrac{{\log 9 + \log 7}}{{\log 2 + \log (2 \times 5 \times 7)}} Factorize number 70.
=log32+log7log2+log2+log5+log7\dfrac{{\log {3^2} + \log 7}}{{\log 2 + \log 2 + \log 5 + \log 7}} 9 can be written as square of 3 .
=2log3+log72log2+log5+log7\dfrac{{2\log 3 + \log 7}}{{2\log 2 + \log 5 + \log 7}} using logax=xloga\log {a^x} = x\log a
=2alog2+log2c2log2+blog2+log2c\dfrac{{2a\log 2 + \dfrac{{\log 2}}{c}}}{{2\log 2 + b\log 2 + \dfrac{{\log 2}}{c}}} log3=alog2,log5=blog2,log7=log2c\log 3 = a\log 2,\log 5 = b\log 2,\log 7 = \dfrac{{\log 2}}{c}
rearranging the log terms so that all come in log2 form
=c×2alog2+log2cc×2log2+bc×log2+log2c\dfrac{{\dfrac{{c \times 2a\log 2 + \log 2}}{c}}}{{\dfrac{{c \times 2\log 2 + bc \times \log 2 + \log 2}}{c}}} taking LCM separately for numerator and denominator.
=log2(2ac+1)log2(2c+bc+1)\dfrac{{\log 2(2ac + 1)}}{{\log 2(2c + bc + 1)}} cancelling C and taking log2 common.
=2ac+12c+bc+1\dfrac{{2ac + 1}}{{2c + bc + 1}}
Thus,
log14063\log {}_{140}63=2ac+12c+bc+1\dfrac{{2ac + 1}}{{2c + bc + 1}}
Option d is the correct answer.

Note: When we solve problems related to logarithm we should try to simplify the ratios as much as we can.
If there is a need to split a number ,we should factorize it using the numbers in the given question.[like 63 and 140]. It is to make your calculations easy.
Don’t miss even a single step like finding L.C.M. or taking common terms.