Solveeit Logo

Question

Mathematics Question on Exponential and Logarithmic Functions

If a=log23,b=log25,c=log72,\log _{2} 3, b=\log _{2} 5, c=\log _{7} 2, then log14063\log _{140} 63 in terms of a, b, c is

A

2ac+12a+abc+1\frac{2 a c+1}{2 a+a b c+1}

B

2ac+12a+c+a\frac{2ac + 1}{ 2a +c +a }

C

2ac+12c+ab+a\frac{2ac + 1}{ 2c + ab+ a }

D

None of these

Answer

None of these

Explanation

Solution

The correct option is: (D) None of these.
=log2(3×3×7)log2(22×5×7)=log23+log23+log272log22+log25+log27=\frac{\log _{2}(3 \times 3 \times 7)}{\log _{2}\left(2^{2} \times 5 \times 7\right)}=\frac{\log _{2} 3+\log _{2} 3+\log _{2} 7}{2 \log _{2} 2+\log _{2} 5+\log _{2} 7}
=2a+1c2+b+1c=2ac+12c+bc+1=\frac{2 a +\frac{1}{ c }}{2+ b +\frac{1}{ c }}=\frac{2 ac +1}{2 c + bc +1}
Now,
log14063=log22×5×7(3×3×7)\log _{140} 63=\log _{22 \times 5 \times 7}(3 \times 3 \times 7)