Solveeit Logo

Question

Question: If \[a = {\log _2}3\], \[b = {\log _2}5\] and \[c = {\log _7}2\], then \[{\log _{140}}63\] in terms ...

If a=log23a = {\log _2}3, b=log25b = {\log _2}5 and c=log72c = {\log _7}2, then log14063{\log _{140}}63 in terms of aa, bb, cc is
A.2ac+12c+ab+1\dfrac{{2ac + 1}}{{2c + ab + 1}}
B.2ac+12a+c+a\dfrac{{2ac + 1}}{{2a + c + a}}
C.2ac+12c+ab+a\dfrac{{2ac + 1}}{{2c + ab + a}}
D.None of these

Explanation

Solution

First, we will start by writing the given logarithm function with same bases usinglogab=1d{\log _a}b = \dfrac{1}{d} for logba=d{\log _b}a = d. Then we will convert the log function to log2{\log _2} term. We can do this by using the change-of-base formula, logax=logbxlogba{\log _a}x = \dfrac{{{{\log }_b}x}}{{{{\log }_b}a}} in the above equation and then use the logarithm property, logbac=logba+logbc{\log _b}ac = {\log _b}a + {\log _b}cand then the power rule of logarithm, logb(ac)=clogba{\log _b}\left( {{a^c}} \right) = c{\log _b}a to simplify the equations to find the required value.

Complete step-by-step answer:
We are given that a=log23a = {\log _2}3, b=log25b = {\log _2}5 and c=log72c = {\log _7}2.
Using the logarithm property, logab=1d{\log _a}b = \dfrac{1}{d} for logba=d{\log _b}a = d in c=log72c = {\log _7}2, we get
log27=1c\Rightarrow {\log _2}7 = \dfrac{1}{c}
Let us take
log14063 ......eq.(1){\log _{140}}63{\text{ ......eq.(1)}}
Rewriting the above equation, we get
log22×5×7(3×3×7)\Rightarrow {\log _{{2^2} \times 5 \times 7}}\left( {3 \times 3 \times 7} \right)
Let us now start by converting the log22×5×7{\log _{{2^2} \times 5 \times 7}} to log2{\log _2} term. We can do this by using the change-of-base formula, logax=logbxlogba{\log _a}x = \dfrac{{{{\log }_b}x}}{{{{\log }_b}a}} in the above equation, we get
log2(3×3×7)log2(22×5×7)\Rightarrow \dfrac{{{{\log }_2}\left( {3 \times 3 \times 7} \right)}}{{{{\log }_2}\left( {{2^2} \times 5 \times 7} \right)}}
Using the logarithm property, logbac=logba+logbc{\log _b}ac = {\log _b}a + {\log _b}c in the above expression, we get

log23+log23+log27log24+log25+log27 log23+log23+log27log222+log25+log27  \Rightarrow \dfrac{{{{\log }_2}3 + {{\log }_2}3 + {{\log }_2}7}}{{{{\log }_2}4 + {{\log }_2}5 + {{\log }_2}7}} \\\ \Rightarrow \dfrac{{{{\log }_2}3 + {{\log }_2}3 + {{\log }_2}7}}{{{{\log }_2}{2^2} + {{\log }_2}5 + {{\log }_2}7}} \\\

Let us now make use of the power rule of logarithm, logb(ac)=clogba{\log _b}\left( {{a^c}} \right) = c{\log _b}a.
So, on applying this rule in the in the above equation, we get
log23+log23+log272log22+log25+log27\Rightarrow \dfrac{{{{\log }_2}3 + {{\log }_2}3 + {{\log }_2}7}}{{2{{\log }_2}2 + {{\log }_2}5 + {{\log }_2}7}}
Substituting the values a=log23a = {\log _2}3, b=log25b = {\log _2}5 and 1c=log27\dfrac{1}{c} = {\log _2}7 in the above equation, we get

a+a+1c2+b+1c 2a+1c2+b+1c 2ac+1c2c+b+1c 2ac+12c+bc+1  \Rightarrow \dfrac{{a + a + \dfrac{1}{c}}}{{2 + b + \dfrac{1}{c}}} \\\ \Rightarrow \dfrac{{2a + \dfrac{1}{c}}}{{2 + b + \dfrac{1}{c}}} \\\ \Rightarrow \dfrac{{\dfrac{{2ac + 1}}{c}}}{{\dfrac{{2c + b + 1}}{c}}} \\\ \Rightarrow \dfrac{{2ac + 1}}{{2c + bc + 1}} \\\

Since none of the options match with the above values, option D is correct.

Note: The power rule can be used for fast exponent calculation using multiplication operation. Students should make use of the appropriate formula of logarithms wherever needed and solve the problem. In mathematics, if the base value in the logarithm function is not written, then the base is ee.