Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

If a line segment OP makes angles of π4 \frac{\pi}{4} and π3\frac{\pi }{3} with X-axis and Y-axis, respectively. Then, the direction cosines are

A

12,32,12\frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{2}, \frac{1}{\sqrt{2}}

B

12,12,12\frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{1}{\sqrt{2}}

C

1,3,11, \sqrt{3}, 1

D

1,13,11, \frac{1}{\sqrt{3}}, 1

Answer

12,12,12\frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{1}{\sqrt{2}}

Explanation

Solution

Let α,β\alpha,\,\beta and γ\gamma be the angles made by the line segment OP with X-axis, Y-axis and Z-axis, respectively.
Given : α=π4andβ=π3\alpha = \frac{\pi}{4} and \beta = \frac{\pi }{3}
cos2α+cos2β+cos2γ=1\because cos^{2} \alpha + cos^{2} \beta+ cos^{2} \gamma = 1
cos2π4+cos2π3+cos2γ=1\therefore cos^{2} \frac{\pi }{4} + cos^{2} \frac{\pi }{3} +cos^{2} \gamma = 1
(12)2+(12)2+cos2γ=1\Rightarrow \left(\frac{1}{\sqrt{2}}\right)^{2} +\left(\frac{1}{2}\right)^{2} +cos^{2} \gamma = 1
12+14+cos2γ=1\Rightarrow \frac{1}{2}+\frac{1}{4} +cos^{2} \gamma = 1
cos2γ=14\Rightarrow cos^{2} \gamma = \frac{1}{4}
cos2γ=12\Rightarrow cos^{2} \gamma = \frac{1}{\sqrt{2}}
γ=π4\therefore \gamma = \frac{\pi }{4}
Hence, direction cosines are cosα,cosβ,cosγcos \,\alpha,\, cos \,\beta, \,cos \,\gamma
i.e12,12,12.i.e \,\frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{1}{\sqrt{2}}.