Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

If a line makes angles π3\frac{\pi }{3} and π4\frac{\pi }{4} with the xx and yy-axis respectively, then the angle made by the line and ZZ-axis is

A

π2\frac{\pi }{2}

B

π3\frac{\pi }{3}

C

π4\frac{\pi }{4}

D

5π12\frac{5\pi }{12}

Answer

π3\frac{\pi }{3}

Explanation

Solution

Let α,β,γ\alpha ,\beta ,\gamma
be the angles with X-axis, Y-axis, Z-axis respectively, then direction cosines are cosα,cosβ\cos \alpha ,\,\cos \,\beta and cosγ\cos \,\gamma
Given, α=π3,β=π4\alpha =\frac{\pi }{3},\beta =\frac{\pi }{4}
\therefore l=cosπ3=12;m=cosπ4=12l=\cos \frac{\pi }{3}=\frac{1}{2};m=\cos \frac{\pi }{4}=\frac{1}{\sqrt{2}}
and n=cosγn=\cos \gamma We know that l2+m2+n2=1{{l}^{2}}+{{m}^{2}}+{{n}^{2}}=1
\Rightarrow 14+12+n2=1\frac{1}{4}+\frac{1}{2}+{{n}^{2}}=1
\Rightarrow n2=14n=12{{n}^{2}}=\frac{1}{4}\Rightarrow n=\frac{1}{2}
\therefore cosγ=12=cosπ3γ=π3\cos \gamma =\frac{1}{2}=\cos \frac{\pi }{3}\Rightarrow \gamma =\frac{\pi }{3}