Solveeit Logo

Question

Mathematics Question on Straight lines

If a line ll passes through (k,2k),(3k,3k)(k, 2 k),(3 k, 3 k) and (3,1),k0(3,1), k \neq 0, then the distance from the origin to the line ll is

A

15\frac{1}{\sqrt{5}}

B

45\frac{4}{\sqrt{5}}

C

35\frac{3}{\sqrt{5}}

D

25\frac{2}{\sqrt{5}}

Answer

15\frac{1}{\sqrt{5}}

Explanation

Solution

Given points A(k,2k),B(3k,3k)A(k, 2 k), B(3 k, 3 k) and C(3,1)C(3,1) are collinear. \therefore Slope of AB=A B= Slope of BCB C 2k2k3kk=13k33k\therefore \frac{2 k-2 k}{3 k-k}=\frac{1-3 k}{3-3 k} k2k=13k33k\Rightarrow \frac{k}{2 k}=\frac{1-3 k}{3-3 k} 33k=2(13k)\Rightarrow 3-3 k=2(1-3 k) 1=3k\Rightarrow 1=-3 k k=13\Rightarrow k=-\frac{1}{3} \therefore Given points become A(13,23),B(1,1)A\left(-\frac{1}{3},-\frac{2}{3}\right), B(-1,-1) and C(3,1)C(3,1). \therefore Equation of line passing through BB and CC is y+1=1+13+1(x+1)y+1=\frac{1+1}{3+1}(x+1) y+1=24(x+1)\Rightarrow y+1 =\frac{2}{4}(x+1) 2(y+1)=(x+1)\Rightarrow 2(y+1)= (x+1) 2yx+1=0 \Rightarrow 2 y-x+1=0 Now, the distance from (0,0)(0,0) to the above line is d=2(0)0+122+12=14+1=15d=\frac{|2(0)-0+1|}{\sqrt{2^{2}+1^{2}}} \Rightarrow=\frac{1}{\sqrt{4+1}}=\frac{1}{\sqrt{5}} Equation of line passing through (k,2k)(k, 2 k) and (3k,3k)(3 k, 3 k) is (y2k)=3k2k3kk(xk)(y-2 k)=\frac{3 k-2 k}{3 k-k}(x-k) y2k=k2k(xk)\Rightarrow y-2 k=\frac{k}{2 k}(x-k) y2k=12(xk)...(i)\Rightarrow y-2 k=\frac{1}{2}(x-k)\,\,\,...(i) Since, above line is passing through (1,1)(1,1). 12k=12(1k)\therefore 1-2 k=\frac{1}{2}(1-k) 24k=1k\Rightarrow 2-4 k=1-k 1=3k\Rightarrow 1=3 k k=13\Rightarrow k=\frac{1}{3} On putting k=13k=\frac{1}{3} in E (i), we get y23=12(x13)y-\frac{2}{3}=\frac{1}{2}\left(x-\frac{1}{3}\right) 3y2=12(3x1)\Rightarrow 3 y-2=\frac{1}{2}(3 x-1) 6y4=3x1\Rightarrow 6 y-4=3 x-1 6y3x3=0 \Rightarrow 6 y-3 x-3=0 or 2yx1=02 y-x-1=0 \therefore Perpendicular distance from (0,0)(0,0) to the above line is d=2(0)0122+12=14+1d =\frac{|2(0)-0-1|}{\sqrt{2^{2}+1^{2}}}=\frac{1}{\sqrt{4+1}} =15=\frac{1}{\sqrt{5}}