Question
Mathematics Question on Limits
If a=limx→0x41+1+x4−2 and b=limx→02−1+cosxsin2x, then the value of ab3 is:
36
32
25
30
32
Solution
Given:
a=limx→0x41+1+x4−2
and
b=limx→02−1+cosxsin2x
We need to find the value of a⋅b2.
Step 1. Finding a: Consider:
a=limx→0x41+1+x4−2
Rationalizing the numerator:
a=limx→0x4(1+1+x4+2)(1+1+x4−2)(1+1+x4+2)
This gives:
a=limx→0x4(1+1+x4+2)1+1+x4−2=limx→0x4(1+1+x4+2)1+x4−1
Approximating 1+x4≈1+2x4 as x→0:
a=limx→0x4(1+1+x4+2)2x4=421
Step 2. Finding b: Consider:
b=limx→02−1+cosxsin2x
Rationalizing the denominator:
b=limx→02−(1+cosx)sin2x(2+1+cosx)
Simplifying:
b=limx→01−cosxsin2x(2+1+cosx)
Using sin2x=1−cos2x and limx→0cosx=1:
b=2(2+1+cosx)=2(2+2)=42
Step 3. Calculating a⋅b2:
a⋅b2=421⋅(42)2=32
Answer: (2)32