Solveeit Logo

Question

Mathematics Question on Limits

If a=limx01+1+x42x4a = \lim_{{x \to 0}} \frac{\sqrt{1 + \sqrt{1 + x^4}} - \sqrt{2}}{x^4} and b=limx0sin2x21+cosxb = \lim_{{x \to 0}} \frac{\sin^2 x}{\sqrt{2} - \sqrt{1 + \cos x}}, then the value of ab3ab^3 is:

A

36

B

32

C

25

D

30

Answer

32

Explanation

Solution

Given:
a=limx01+1+x42x4a = \lim_{x \to 0} \frac{\sqrt{1 + \sqrt{1 + x^4}} - \sqrt{2}}{x^4}
and

b=limx0sin2x21+cosxb = \lim_{x \to 0} \frac{\sin^2 x}{\sqrt{2} - \sqrt{1 + \cos x}}

We need to find the value of ab2a \cdot b^2.

Step 1. Finding aa: Consider:
a=limx01+1+x42x4a = \lim_{x \to 0} \frac{\sqrt{1 + \sqrt{1 + x^4}} - \sqrt{2}}{x^4}
Rationalizing the numerator:

a=limx0(1+1+x42)(1+1+x4+2)x4(1+1+x4+2)a = \lim_{x \to 0} \frac{\left( \sqrt{1 + \sqrt{1 + x^4}} - \sqrt{2} \right) \left( \sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2} \right)}{x^4 \left( \sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2} \right)}

This gives:

a=limx01+1+x42x4(1+1+x4+2)=limx01+x41x4(1+1+x4+2)a = \lim_{x \to 0} \frac{1 + \sqrt{1 + x^4} - 2}{x^4 \left( \sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2} \right)} = \lim_{x \to 0} \frac{\sqrt{1 + x^4} - 1}{x^4 \left( \sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2} \right)}

Approximating 1+x41+x42\sqrt{1 + x^4} \approx 1 + \frac{x^4}{2} as x0x \to 0:

a=limx0x42x4(1+1+x4+2)=142a = \lim_{x \to 0} \frac{\frac{x^4}{2}}{x^4 \left( \sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2} \right)} = \frac{1}{4\sqrt{2}}

Step 2. Finding bb: Consider:
b=limx0sin2x21+cosxb = \lim_{x \to 0} \frac{\sin^2 x}{\sqrt{2} - \sqrt{1 + \cos x}}
Rationalizing the denominator:
b=limx0sin2x(2+1+cosx)2(1+cosx)b = \lim_{x \to 0} \frac{\sin^2 x \left( \sqrt{2} + \sqrt{1 + \cos x} \right)}{2 - (1 + \cos x)}
Simplifying:

b=limx0sin2x(2+1+cosx)1cosxb = \lim_{x \to 0} \frac{\sin^2 x \left( \sqrt{2} + \sqrt{1 + \cos x} \right)}{1 - \cos x}

Using sin2x=1cos2x\sin^2 x = 1 - \cos^2 x and limx0cosx=1\lim_{x \to 0} \cos x = 1:

b=2(2+1+cosx)=2(2+2)=42b = 2 \left( \sqrt{2 + \sqrt{1 + \cos x}} \right) = 2 (\sqrt{2 + \sqrt{2}}) = 4\sqrt{2}

Step 3. Calculating ab2a \cdot b^2:

ab2=142(42)2=32a \cdot b^2 = \frac{1}{4\sqrt{2}} \cdot (4\sqrt{2})^2 = 32

Answer: (2)32(2) \, 32