Solveeit Logo

Question

Mathematics Question on Definite Integral

If a=limnk=1n2nn2+k2a = \lim_{{n \to \infty}} \sum_{{k=1}}^{n} \frac{2n}{{n^2 + k^2}}and
f(x)=1cosx1+cosx,x(0,1)f(x) = \sqrt{\frac{1 - \cos x}{1 + \cos x}}, \quad x \in (0, 1) then

A

22f(a2)=f(a2)2\sqrt2f(\frac{a}{2})=f^′(\frac{a}{2})

B

f(a2)f(a2)=2f(\frac{a}{2})f^′(\frac{a}{2})=\sqrt2

C

2f(a2)=f(a2)\sqrt2f(\frac{a}{2})=f^′(\frac{a}{2})

D

f(a2)=2f(a2)f(\frac{a}{2})=\sqrt2f^′(\frac{a}{2})

Answer

2f(a2)=f(a2)\sqrt2f(\frac{a}{2})=f^′(\frac{a}{2})

Explanation

Solution

The correct answer is (C) : 2f(a2)=f(a2)\sqrt2f(\frac{a}{2})=f^′(\frac{a}{2})
a=limnk=1n2nn2+k2a = \lim_{{n \to \infty}} \sum_{{k=1}}^{n} \frac{2n}{{n^2 + k^2}}
a=limn1nk=1n21+(kn)2a = \lim_{{n \to \infty}} \frac{1}{n} \sum_{{k=1}}^{n} \frac{2}{{1 + \left(\frac{k}{n}\right)^2}}
a=0121+x2dxa = \int_{0}^{1} \frac{2}{1 + x^2} \,dx =2tan1(x)01=π2=2\tan^{-1}(x) \int_{0}^{1} = \frac{\pi}{2}
f(x)=1cosx1+cosx,x(0,1)f(x) = \sqrt{\frac{1 - \cos x}{1 + \cos x}}, \quad x \in (0, 1)
f(x)=1cosxsinx=cosecxcotxf(x)=\frac{1−\cos⁡x}{sin⁡x}=cosec x−cot⁡x
f(x)=cosec2xcosecxcotxf'(x)=\cosec^2x−\cosec x\cot⁡x
\begin{aligned} f\left(\frac{a}{2}\right) &= f\left(\frac{\pi}{4}\right) = \sqrt{2} - 1 \\\ f'\left(\frac{a}{2}\right) &= f'\left(\frac{\pi}{4}\right) = 2 - \sqrt{2} \end{aligned} \left. \begin{aligned} f'\left(\frac{a}{2}\right) &= \sqrt{2} \cdot f\left(\frac{a}{2}\right) \end{aligned} \right\\}