Question
Mathematics Question on Definite Integral
If a=limn→∞∑k=1nn2+k22nand
f(x)=1+cosx1−cosx,x∈(0,1) then
A
22f(2a)=f′(2a)
B
f(2a)f′(2a)=2
C
2f(2a)=f′(2a)
D
f(2a)=2f′(2a)
Answer
2f(2a)=f′(2a)
Explanation
Solution
The correct answer is (C) : 2f(2a)=f′(2a)
a=limn→∞∑k=1nn2+k22n
a=limn→∞n1∑k=1n1+(nk)22
a=∫011+x22dx =2tan−1(x)∫01=2π
f(x)=1+cosx1−cosx,x∈(0,1)
f(x)=sinx1−cosx=cosecx−cotx
f′(x)=cosec2x−cosecxcotx
\begin{aligned} f\left(\frac{a}{2}\right) &= f\left(\frac{\pi}{4}\right) = \sqrt{2} - 1 \\\ f'\left(\frac{a}{2}\right) &= f'\left(\frac{\pi}{4}\right) = 2 - \sqrt{2} \end{aligned} \left. \begin{aligned} f'\left(\frac{a}{2}\right) &= \sqrt{2} \cdot f\left(\frac{a}{2}\right) \end{aligned} \right\\}