Solveeit Logo

Question

Question: If \(A\left( {y,2} \right)\), \(B\left( {1,y} \right)\) and \(AB = 5\), then the possible values of ...

If A(y,2)A\left( {y,2} \right), B(1,y)B\left( {1,y} \right) and AB=5AB = 5, then the possible values of yy area
A.6,26,2
B.5,25, - 2
C.2,6 - 2, - 6
D.2,02,0

Explanation

Solution

In order to find the value of yy, check out the information given, that is two points and their distance. Use the distance formula Distance = (y2y1)2+(x2x1)2{\text{Distance = }}\sqrt {{{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{x_2} - {x_1}} \right)}^2}} to form an equation containing the unknown variable y. Solve the equation’s step by step and get the possible values of yy.

Complete step by step solution:
We are given two points A(y,2)A\left( {y,2} \right) and B(1,y)B\left( {1,y} \right) along with the distance between the points to be AB=5AB = 5.
The diagram according to this:

Considering the 1st point A(y,2)A\left( {y,2} \right) to be A(x1,y1)A\left( {{x_1},{y_1}} \right), comparing them, we get:
x1=y{x_1} = y
y1=2{y_1} = 2
Similarly, comparing the 2nd point B(1,y)B\left( {1,y} \right) to be B(x2,y2)B\left( {{x_2},{y_2}} \right) comparing them we get:
x2=1{x_2} = 1
y2=y{y_2} = y
From the Distance formula we know that:
Distance = (y2y1)2+(x2x1)2{\text{Distance = }}\sqrt {{{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{x_2} - {x_1}} \right)}^2}}
Since, we are also given with the distance between them AB=5AB = 5, so substituting Distance as AB;
AB = (y2y1)2+(x2x1)2{\text{AB = }}\sqrt {{{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{x_2} - {x_1}} \right)}^2}}
Now, Substituting the value of ABAB, x1{x_1}, x2{x_2}, y1{y_1} and y2{y_2} in the above equation and we get:
5 = (y2)2+(1y)2{\text{5 = }}\sqrt {{{\left( {y - 2} \right)}^2} + {{\left( {1 - y} \right)}^2}}

Squaring both the sides, we get:
(5)2 = ((y2)2+(1y)2)2{\left( {\text{5}} \right)^2}{\text{ = }}{\left( {\sqrt {{{\left( {y - 2} \right)}^2} + {{\left( {1 - y} \right)}^2}} } \right)^2}
25 = (y2)2+(1y)2\Rightarrow 25{\text{ = }}{\left( {y - 2} \right)^2} + {\left( {1 - y} \right)^2}
Opening the square brackets, using the formula (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab, in the above equation, we get:
25 = y2+44y+1+y22y\Rightarrow 25{\text{ = }}{y^2} + 4 - 4y + 1 + {y^2} - 2y
Solving it further:
25 = 2y2+56y\Rightarrow 25{\text{ = 2}}{y^2} + 5 - 6y
2y26y+5=25\Rightarrow 2{y^2} - 6y + 5 = 25
Subtracting both the sides by 2525:
2y26y+525=2525\Rightarrow 2{y^2} - 6y + 5 - 25 = 25 - 25
2y26y20=0\Rightarrow 2{y^2} - 6y - 20 = 0
Taking 22 common from the left side, we get:
2(y23y10)=0\Rightarrow 2\left( {{y^2} - 3y - 10} \right) = 0
Dividing the equation by 22:
2(y23y10)2=0\Rightarrow \dfrac{{2\left( {{y^2} - 3y - 10} \right)}}{2} = 0
y23y10=0\Rightarrow {y^2} - 3y - 10 = 0
Since, the highest degree on y is 2, therefore it’s a quadratic equation:
Using the mid-term splitting method, for splitting the mid-term 3y - 3y as 5y+2y - 5y + 2y.
y25y+2y10=0\Rightarrow {y^2} - 5y + 2y - 10 = 0
Pairing the operands:
(y25y)+(2y10)=0\Rightarrow \left( {{y^2} - 5y} \right) + \left( {2y - 10} \right) = 0
Taking yy common from the first bracket and 22 from the second bracket:
y(y5)+2(y5)=0\Rightarrow y\left( {y - 5} \right) + 2\left( {y - 5} \right) = 0
Taking (y5)\left( {y - 5} \right) brackets common:
(y5)(y+2)=0\Rightarrow \left( {y - 5} \right)\left( {y + 2} \right) = 0
Equating the brackets with 0, we get:
(y5)=0 or (y+2)=0\Rightarrow \left( {y - 5} \right) = 0{\text{ or }}\left( {y + 2} \right) = 0
Solving the brackets separately, we get:
For the first bracket:
(y5)=0 \Rightarrow \left( {y - 5} \right) = 0{\text{ }}
Adding both the sides by 5:
y5+5=0+5\Rightarrow y - 5 + 5 = 0 + 5
y=5\Rightarrow y = 5 ……(1)
For the second bracket:
(y+2)=0 \Rightarrow \left( {y + 2} \right) = 0{\text{ }}
Subtracting both the sides by 2:
y+22=02\Rightarrow y + 2 - 2 = 0 - 2
y=2\Rightarrow y = - 2 …..(2)
From (1) and (2), we get:
y=2 or 5\Rightarrow y = - 2{\text{ or }}5
y=2,5\Rightarrow y = - 2,5
Therefore, the value of yy is 2 or 5 - 2{\text{ or }}5.
Option B is correct.
So, the correct answer is “Option B”.

Note: We have used the mid-term splitting method to solve the quadratic equation, in which the mid-term is splitted in such a way that the product of them gives the product of the remaining terms and the sum of the terms gives the mid-term itself.
We could have also used the quadratic formula to solve the quadratic equation, both will result in the same values.