Solveeit Logo

Question

Mathematics Question on Increasing and Decreasing Functions

If A=\left\\{x \in R / \frac{\pi}{4} \leq x \leq \frac{\pi}{3}\right\\} and f(x)=sinxxf(x)=\sin x-x, then f(A)f(A) is equal to

A

[32π3,12π4]\left[\frac{\sqrt{3}}{2}-\frac{\pi}{3}, \frac{1}{\sqrt{2}}-\frac{\pi}{4}\right]

B

[12π4,32π3]\left[\frac{-1}{\sqrt{2}}-\frac{\pi}{4}, \frac{\sqrt{3}}{2}-\frac{\pi}{3}\right]

C

[π3,π4]\left[-\frac{\pi}{3},-\frac{\pi}{4}\right]

D

[π4,π3]\left[\frac{\pi}{4}, \frac{\pi}{3}\right]

Answer

[32π3,12π4]\left[\frac{\sqrt{3}}{2}-\frac{\pi}{3}, \frac{1}{\sqrt{2}}-\frac{\pi}{4}\right]

Explanation

Solution

Given, f(x)=sinxxf(x)=\sin x-x
which is decreasing function in the interva [π4,π3]\left[\frac{\pi}{4}, \frac{\pi}{3}\right].
π4xπ3\therefore \frac{\pi}{4} \leq x \leq \frac{\pi}{3}
f(π4)f(x)f(π3)\Rightarrow f\left(\frac{\pi}{4}\right) \geq f(x) \geq f\left(\frac{\pi}{3}\right)
sinπ4π4f(x)sinπ3π3\Rightarrow \sin \frac{\pi}{4}-\frac{\pi}{4} \geq f(x) \geq \sin \frac{\pi}{3}-\frac{\pi}{3}
12π4f(x)32π3\Rightarrow \frac{1}{\sqrt{2}}-\frac{\pi}{4} \geq f(x) \geq \frac{\sqrt{3}}{2}-\frac{\pi}{3}
f(A)[32π3,12π4]\Rightarrow f(A) \in\left[\frac{\sqrt{3}}{2}-\frac{\pi}{3}, \frac{1}{\sqrt{2}}-\frac{\pi}{4}\right]